21,906 research outputs found
Dual-mode mechanical resonance of individual ZnO nanobelts
©2003 American Institute of Physics. The electronic version of this article is the complete one and can be found online at: http://link.aip.org/link/?APPLAB/82/4806/1DOI:10.1063/1.1587878The mechanical resonance of a single ZnO nanobelt, induced by an alternative electric field, was studied by in situ transmission electron microscopy. Due to the rectangular cross section of the nanobelt, two fundamental resonance modes have been observed corresponding to two orthogonal transverse vibration directions, showing the versatile applications of nanobelts as nanocantilevers and nanoresonators. The bending modulus of the ZnO nanobelts was measured to be ~52 GPa and the damping time constant of the resonance in a vacuum of 5×10–8 Torr was ~1.2 ms and quality factor Q = 500
Measurement of the mass of the τ lepton
A data-driven energy scan in the immediate vicinity of the τ pair production threshold has been performed using the Beijing Spectrometer at the Beijing Electron-Positron Collider. Approximately 5 pb^(-1) of data, distributed over 12 scan points, have been collected. A previous mass value for the τ lepton, obtained using only the eμ final state, has been published. In this paper, the final BES result on the mass measurement is presented. The analysis is based on the combined data from the ee, eμ, eh, μμ, μh, and hh final states, where h denotes a charged π or K. A maximum likelihood fit to the τ pair production cross section data yields the value m_τ=1776.96_(-0.21)-0.17^(+0.18+0.25) MeV
Spin and lattice excitations of a BiFeO3 thin film and ceramics
We present a comprehensive study of polar and magnetic excitations in BiFeO3
ceramics and a thin film epitaxially grown on an orthorhombic (110) TbScO3
substrate. Infrared reflectivity spectroscopy was performed at temperatures
from 5 to 900 K for the ceramics and below room temperature for the thin film.
All 13 polar phonons allowed by the factor-group analysis were observed in
theceramic samples. The thin-film spectra revealed 12 phonon modes only and an
additional weak excitation, probably of spin origin. On heating towards the
ferroelectric phase transition near 1100 K, some phonons soften, leading to an
increase in the static permittivity. In the ceramics, terahertz transmission
spectra show five low-energy magnetic excitations including two which were not
previously known to be infrared active; at 5 K, their frequencies are 53 and 56
cm-1. Heating induces softening of all magnetic modes. At a temperature of 5 K,
applying an external magnetic field of up to 7 T irreversibly alters the
intensities of some of these modes. The frequencies of the observed spin
excitations provide support for the recently developed complex model of
magnetic interactions in BiFeO3 (R.S. Fishman, Phys. Rev. B 87, 224419 (2013)).
The simultaneous infrared and Raman activity of the spin excitations is
consistent with their assignment to electromagnons
Effect of the tensor force on the charge-exchange spin-dipole excitations of 208Pb
The charge-exchange spin-dipole (SD) excitations of 208Pb are studied by
using a fully self-consistent Skyrme Hartree-Fock plus Random Phase
Approximation (HF+RPA) formalism which includes the tensor interaction. It is
found, for the first time, that the tensor correlations have a unique,
multipole-dependent effect on the SD excitations, that is, they produce
softening of 1- states, but hardening of 0- and 2- states. This paves the way
to a clear assessment of the strength of the tensor terms. We compare our
results with a recent measurement, showing that our choice of tensor terms
improves the agreement with experiment. The robustness of our results is
supported by the analytic form of the tensor matrix elements.Comment: 4 pages, 1 figure, 2 table
Some properties of the newly observed X(1835) state at BES
Recently the BES collaboration has announced observation of a resonant state
in the spectrum in
decay. Fitting the data with a state, the mass is determined to be
1833.7 MeV with statistic significance. This state is consistent
with the one extracted from previously reported threshold
enhancement data in . We study the properties of
this state using QCD anomaly and QCD sum rules assuming X(1835) to be a
pseudoscalar and show that it is consistent with data. We find that this state
has a sizeable matrix element leading to branching ratios
of and for
and for , respectively.
Combining the calculated branching ratio of and data on
threshold enhancement in , we determine the
coupling for interaction. We finally study branching ratios of
other decay modes. We find that can provide useful
tests for the mechanism proposed.Comment: 13 pages, 3 figures. The final version to appear at EPJ
Monotone iterative procedure and systems of a finite number of nonlinear fractional differential equations
The aim of the paper is to present a nontrivial and natural extension of the
comparison result and the monotone iterative procedure based on upper and lower
solutions, which were recently established in (Wang et al. in Appl. Math. Lett.
25:1019-1024, 2012), to the case of any finite number of nonlinear fractional
differential equations.The author is very grateful to the reviewers for the remarks, which improved the final version of the manuscript. This
article was financially supported by University of Łódź as a part of donation for the research activities aimed at the
development of young scientists, grant no. 545/1117
The 13N(d,n)14O Reaction and the Astrophysical 13N(p,g)14O Reaction Rate
N()O is one of the key reactions in the hot CNO cycle
which occurs at stellar temperatures around 0.1. Up to now, some
uncertainties still exist for the direct capture component in this reaction,
thus an independent measurement is of importance. In present work, the angular
distribution of the N()O reaction at = 8.9
MeV has been measured in inverse kinematics, for the first time. Based on the
distorted wave Born approximation (DWBA) analysis, the nuclear asymptotic
normalization coefficient (ANC), , for the ground state of
O N + is derived to be fm. The
N()O reaction is analyzed with the R-matrix approach,
its astrophysical S-factors and reaction rates at energies of astrophysical
relevance are then determined with the ANC. The implications of the present
reaction rates on the evolution of novae are then discussed with the reaction
network calculations.Comment: 17 pages and 8 figure
A Unified Approach to the Classical Statistical Analysis of Small Signals
We give a classical confidence belt construction which unifies the treatment
of upper confidence limits for null results and two-sided confidence intervals
for non-null results. The unified treatment solves a problem (apparently not
previously recognized) that the choice of upper limit or two-sided intervals
leads to intervals which are not confidence intervals if the choice is based on
the data. We apply the construction to two related problems which have recently
been a battle-ground between classical and Bayesian statistics: Poisson
processes with background, and Gaussian errors with a bounded physical region.
In contrast with the usual classical construction for upper limits, our
construction avoids unphysical confidence intervals. In contrast with some
popular Bayesian intervals, our intervals eliminate conservatism (frequentist
coverage greater than the stated confidence) in the Gaussian case and reduce it
to a level dictated by discreteness in the Poisson case. We generalize the
method in order to apply it to analysis of experiments searching for neutrino
oscillations. We show that this technique both gives correct coverage and is
powerful, while other classical techniques that have been used by neutrino
oscillation search experiments fail one or both of these criteria.Comment: 40 pages, 15 figures. Changes 15-Dec-99 to agree more closely with
published version. A few small changes, plus the two substantive changes we
made in proof back in 1998: 1) The definition of "sensitivity" in Sec. V(C).
It was inconsistent with our actual definition in Sec. VI. 2) "Note added in
proof" at end of the Conclusio
- …
