206 research outputs found

    Delocalizing transition of multidimensional solitons in Bose-Einstein condensates

    Full text link
    Critical behavior of solitonic waveforms of Bose-Einstein condensates in optical lattices (OL) has been studied in the framework of continuous mean-field equation. In 2D and 3D OLs bright matter-wave solitons undergo abrupt delocalization as the strength of the OL is decreased below some critical value. Similar delocalizing transition happens when the coefficient of nonlinearity crosses the critical value. Contrarily, bright solitons in 1D OLs retain their integrity over the whole range of parameter variations. The interpretation of the phenomenon in terms of quantum bound states in the effective potential is proposed.Comment: 12 pages, 19 figures, submitted to Phys. Rev.

    Multidimensional semi-gap solitons in a periodic potential

    Full text link
    The existence, stability and other dynamical properties of a new type of multi-dimensional (2D or 3D) solitons supported by a transverse low-dimensional (1D or 2D, respectively) periodic potential in the nonlinear Schr\"{o}dinger equation with the self-defocusing cubic nonlinearity are studied. The equation describes propagation of light in a medium with normal group-velocity dispersion (GVD). Strictly speaking, solitons cannot exist in the model, as its spectrum does not support a true bandgap. Nevertheless, the variational approximation (VA) and numerical computations reveal stable solutions that seem as completely localized ones, an explanation to which is given. The solutions are of the gap-soliton type in the transverse direction(s), in which the periodic potential acts in combination with the diffraction and self-defocusing nonlinearity. Simultaneously, in the longitudinal (temporal) direction these are ordinary solitons, supported by the balance of the normal GVD and defocusing nonlinearity. Stability of the solitons is predicted by the VA, and corroborated by direct simulations.Comment: European Physical Joournal D, in pres

    Matter-wave solitons in radially periodic potentials

    Full text link
    We investigate two-dimensional (2D) states of Bose-Einstein condensates (BEC) with self-attraction or self-repulsion, trapped in an axially symmetric optical-lattice potential periodic along the radius. Unlike previously studied 2D models with Bessel lattices, no localized states exist in the linear limit of the present model, hence all localized states are truly nonlinear ones. We consider the states trapped in the central potential well, and in remote circular troughs. In both cases, a new species, in the form of \textit{radial gap solitons}, are found in the repulsive model (the gap soliton trapped in a circular trough may additionally support stable dark-soliton pairs). In remote troughs, stable localized states may assume a ring-like shape, or shrink into strongly localized solitons. The existence of stable annular states, both azimuthally uniform and weakly modulated ones, is corroborated by simulations of the corresponding Gross-Pitaevskii equation. Dynamics of strongly localized solitons circulating in the troughs is also studied. While the solitons with sufficiently small velocities are stable, fast solitons gradually decay, due to the leakage of matter into the adjacent trough under the action of the centrifugal force. Collisions between solitons are investigated too. Head-on collisions of in-phase solitons lead to the collapse; π\pi -out of phase solitons bounce many times, but eventually merge into a single soliton without collapsing. The proposed setting may also be realized in terms of spatial solitons in photonic-crystal fibers with a radial structure.Comment: 16 pages, 23 figure

    Multidimensional solitons in a low-dimensional periodic potential

    Full text link
    Using the variational approximation(VA) and direct simulations, we find stable 2D and 3D solitons in the self-attractive Gross-Pitaevskii equation (GPE) with a potential which is uniform in one direction (zz) and periodic in the others (but the quasi-1D potentials cannot stabilize 3D solitons). The family of solitons includes single- and multi-peaked ones. The results apply to Bose-Einstein condensates (BECs) in optical lattices (OLs), and to spatial or spatiotemporal solitons in layered optical media. This is the first prediction of {\em mobile} 2D and 3D solitons in BECs, as they keep mobility along zz. Head-on collisions of in-phase solitons lead to their fusion into a collapsing pulse. Solitons colliding in adjacent OL-induced channels may form a bound state (BS), which then relaxes to a stable asymmetric form. An initially unstable soliton splits into a three-soliton BS. Localized states in the self-repulsive GPE with the low-dimensional OL are found too.Comment: 4 pages, 5 figure

    Symbiotic gap and semi-gap solitons in Bose-Einstein condensates

    Full text link
    Using the variational approximation and numerical simulations, we study one-dimensional gap solitons in a binary Bose-Einstein condensate trapped in an optical-lattice potential. We consider the case of inter-species repulsion, while the intra-species interaction may be either repulsive or attractive. Several types of gap solitons are found: symmetric or asymmetric; unsplit or split, if centers of the components coincide or separate; intra-gap (with both chemical potentials falling into a single bandgap) or inter-gap, otherwise. In the case of the intra-species attraction, a smooth transition takes place between solitons in the semi-infinite gap, the ones in the first finite bandgap, and semi-gap solitons (with one component in a bandgap and the other in the semi-infinite gap).Comment: 5 pages, 9 figure

    Interaction of solitons in dipolar Bose-Einstein condensates and formation of soliton molecules

    Full text link
    The interaction between two bright solitons in a dipolar Bose-Einstein condensate (BEC) has been investigated aiming at finding the regimes when they form a stable bound state, known as soliton molecule. To study soliton interactions in BEC we employed a method similar to that used in experimental investigation of the interaction between solitons in optical fibers. The idea consists in creating two solitons at some spatial separation from each other at initial time t0t_0, and then measuring the distance between them at a later time t1>t0t_1 > t_0. Depending on whether the distance between solitons has increased, decreased or remained unchanged, compared to its initial value at t0t_0, we conclude that soliton interaction was repulsive, attractive or neutral, respectively. We propose an experimentally viable method for estimating the binding energy of a soliton molecule, based on its dissociation at critical soliton velocity. Our theoretical analysis is based on the variational approach, which appears to be quite accurate in describing the properties of soliton molecules in dipolar BEC, as reflected in good agreement between the analytical and numerical results.Comment: 8 pages, 5 figure

    Stabilization of three--dimensional light bullets by a transverse lattice in a Kerr medium with dispersion management

    Full text link
    We demonstrate a possibility to stabilize three-dimensional spatiotemporal solitons ("light bullets") in self--focusing Kerr media by means of a combination of dispersion management in the longitudinal direction (with the group-velocity dispersion alternating between positive and negative values) and periodic modulation of the refractive index in one transverse direction, out of the two. The analysis is based on the variational approximation (results of direct three-dimensional simulations will be reported in a follow-up work). A predicted stability area is identified in the model's parameter space. It features a minimum of the necessary strength of the transverse modulation of the refractive index, and finite minimum and maximum values of the soliton's energy. The former feature is also explained analytically.Comment: 12 pages, 3 figures, submitted to Optics Communication
    corecore