6,345 research outputs found

    Understanding Confinement From Deconfinement

    Full text link
    We use effective magnetic SU(N) pure gauge theory with cutoff M and fixed gauge coupling g_m to calculate non-perturbative magnetic properties of the deconfined phase of SU(N) Yang-Mills theory. We obtain the response to an external closed loop of electric current by reinterpreting and regulating the calculation of the one loop effective potential in Yang-Mills theory. This effective potential gives rise to a color magnetic charge density, the counterpart in the deconfined phase of color magnetic currents introduced in effective dual superconductor theories of the confined phase via magnetically charged Higgs fields. The resulting spatial Wilson loop has area law behavior. Using values of M and g_m determined in the confined phase, we find SU(3) spatial string tensions compatible with lattice simulations in the temperature interval 1.5T_c < T < 2.5T_c. Use of the effective theory to analyze experiments on heavy ion collisions will provide applications and further tests of these ideas.Comment: 18 pages, 5 figures, v2: fixed archive title (only

    More Than a Zip Code: Addressing Home Factors Influencing Kindergarten Readiness Levels

    Get PDF
    Families and primary caregivers play an important role in developing essential emergent literacy skills of children from birth so that they are ready for kindergarten and have a strong foundation for future academic success. This article explores factors that influence the emergent literacy development process and offers strategies to boost school readiness levels and literacy rates among children

    Keeper-animal interactions: differences between the behaviour of zoo animals affect stockmanship

    Get PDF
    Stockmanship is a term used to describe the management of animals with a good stockperson someone who does this in a in a safe, effective, and low-stress manner for both the stock-keeper and animals involved. Although impacts of unfamiliar zoo visitors on animal behaviour have been extensively studied, the impact of stockmanship i.e familiar zoo keepers is a new area of research; which could reveal significant ramifications for zoo animal behaviour and welfare. It is likely that different relationships are formed dependant on the unique keeper-animal dyad (human-animal interaction, HAI). The aims of this study were to (1) investigate if unique keeper-animal dyads were formed in zoos, (2) determine whether keepers differed in their interactions towards animals regarding their attitude, animal knowl- edge and experience and (3) explore what factors affect keeper-animal dyads and ultimately influence animal behaviour and welfare. Eight black rhinoceros (Diceros bicornis), eleven Chapman’s zebra (Equus burchellii), and twelve Sulawesi crested black macaques (Macaca nigra) were studied in 6 zoos across the UK and USA. Subtle cues and commands directed by keepers towards animals were identified. The animals latency to respond and the respective behavioural response (cue-response) was recorded per keeper-animal dyad (n=93). A questionnaire was constructed following a five-point Likert Scale design to record keeper demographic information and assess the job satisfaction of keepers, their attitude towards the animals and their perceived relationship with them. There was a significant difference in the animals’ latency to appropriately respond after cues and commands from different keepers, indicating unique keeper-animal dyads were formed. Stockmanship style was also different between keepers; two main components contributed equally towards this: “attitude towards the animals” and “knowledge and experience of the animals”. In this novel study, data demonstrated unique dyads were formed between keepers and zoo animals, which influenced animal behaviour

    Finite N Fluctuation Formulas for Random Matrices

    Full text link
    For the Gaussian and Laguerre random matrix ensembles, the probability density function (p.d.f.) for the linear statistic j=1N(xj)\sum_{j=1}^N (x_j - ) is computed exactly and shown to satisfy a central limit theorem as NN \to \infty. For the circular random matrix ensemble the p.d.f.'s for the linear statistics 12j=1N(θjπ){1 \over 2} \sum_{j=1}^N (\theta_j - \pi) and j=1Nlog2sinθj/2- \sum_{j=1}^N \log 2|\sin \theta_j/2| are calculated exactly by using a constant term identity from the theory of the Selberg integral, and are also shown to satisfy a central limit theorem as NN \to \infty.Comment: LaTeX 2.09, 11 pages + 3 eps figs (needs epsf.sty

    The Gluon Propagator without lattice Gribov copies

    Get PDF
    We study the gluon propagator in quenched lattice QCD using the Laplacian gauge which is free of lattice Gribov copies. We compare our results with those obtained in the Landau gauge on the lattice, as well as with various approximate solutions of the Dyson Schwinger equations. We find a finite value (445MeV)2\sim (445 \rm{MeV})^{-2} for the renormalized zero-momentum propagator (taking our renormalization point at 1.943 GeV), and a pole mass 640±140\sim 640 \pm 140 MeV.Comment: Discussion of the renormalized gluon propagator and of the Laplacian gauge fixing procedure extended. Version to appear in Phys. Rev. D. 15 pages, 8 figure

    Access to interpreting services in England: secondary analysis of national data

    Get PDF
    Background: Overcoming language barriers to health care is a global challenge. There is great linguistic diversity in the major cities in the UK with more than 300 languages, excluding dialects, spoken by children in London alone. However, there is dearth of data on the number of non-English speakers for planning effective interpreting services. The aim was to estimate the number of people requiring language support amongst the minority ethnic communities in England. Methods: Secondary analysis of national representative sample of subjects recruited to the Health Surveys for England 1999 and 2004. Results: 298,432 individuals from the four main minority ethnic communities (Indian, Pakistani, Bangladeshi and Chinese) who may be unable to communicate effectively with a health professional. This represents 2,520,885 general practice consultations per year where interpreting services might be required. Conclusion: Effective interpreting services are required to improve access and health outcomes of non-English speakers and thereby facilitate a reduction in health inequalities

    Expanded Vandermonde powers and sum rules for the two-dimensional one-component plasma

    Full text link
    The two-dimensional one-component plasma (2dOCP) is a system of NN mobile particles of the same charge qq on a surface with a neutralising background. The Boltzmann factor of the 2dOCP at temperature TT can be expressed as a Vandermonde determinant to the power Γ=q2/(kBT)\Gamma=q^{2}/(k_B T). Recent advances in the theory of symmetric and anti-symmetric Jack polymonials provide an efficient way to expand this power of the Vandermonde in their monomial basis, allowing the computation of several thermodynamic and structural properties of the 2dOCP for NN values up to 14 and Γ\Gamma equal to 4, 6 and 8. In this work, we explore two applications of this formalism to study the moments of the pair correlation function of the 2dOCP on a sphere, and the distribution of radial linear statistics of the 2dOCP in the plane

    Gravitational waves from intermediate-mass black holes in young clusters

    Full text link
    Massive young clusters (YCs) are expected to host intermediate-mass black holes (IMBHs) born via runaway collapse. These IMBHs are likely in binaries and can undergo mergers with other compact objects, such as stellar mass black holes (BHs) and neutron stars (NSs). We derive the frequency of such mergers starting from information available in the Local Universe. Mergers of IMBH-NS and IMBH-BH binaries are sources of gravitational waves (GWs), which might allow us to reveal the presence of IMBHs. We thus examine their detectability by current and future GW observatories, both ground- and space-based. In particular, as representative of different classes of instruments we consider Initial and Advanced LIGO, the Einstein gravitational-wave Telescope (ET) and the Laser Interferometer Space Antenna (LISA). We find that IMBH mergers are unlikely to be detected with instruments operating at the current sensitivity (Initial LIGO). LISA detections are disfavored by the mass range of IMBH-NS and IMBH-BH binaries: less than one event per year is expected to be observed by such instrument. Advanced LIGO is expected to observe a few merger events involving IMBH binaries in a 1-year long observation. Advanced LIGO is particularly suited for mergers of relatively light IMBHs (~100 Msun) with stellar mass BHs. The number of mergers detectable with ET is much larger: tens (hundreds) of IMBH-NS (IMBH-BH) mergers might be observed per year, according to the runaway collapse scenario for the formation of IMBHs. We note that our results are affected by large uncertainties, produced by poor observational constraints on many of the physical processes involved in this study, such as the evolution of the YC density with redshift.[abridged]Comment: 29 pages, 4 figures, accepted for publication in Ap

    Three-dimensional CFD simulations with large displacement of the geometries using a connectivity-change moving mesh approach

    Get PDF
    This paper deals with three-dimensional (3D) numerical simulations involving 3D moving geometries with large displacements on unstructured meshes. Such simulations are of great value to industry, but remain very time-consuming. A robust moving mesh algorithm coupling an elasticity-like mesh deformation solution and mesh optimizations was proposed in previous works, which removes the need for global remeshing when performing large displacements. The optimizations, and in particular generalized edge/face swapping, preserve the initial quality of the mesh throughout the simulation. We propose to integrate an Arbitrary Lagrangian Eulerian compressible flow solver into this process to demonstrate its capabilities in a full CFD computation context. This solver relies on a local enforcement of the discrete geometric conservation law to preserve the order of accuracy of the time integration. The displacement of the geometries is either imposed, or driven by fluid–structure interaction (FSI). In the latter case, the six degrees of freedom approach for rigid bodies is considered. Finally, several 3D imposed-motion and FSI examples are given to validate the proposed approach, both in academic and industrial configurations
    corecore