1,729 research outputs found
Multiple-relaxation-time Finsler-Lagrange dynamics in a compressed Langmuir monolayer
In this paper an information geometric approach has been proposed to describe
the two-dimensional (2d) phase transition of the first order in a monomolecular
layer (monolayer) of amphiphilic molecules deposited on air/water interface.
The structurization of the monolayer was simulated as an entropy evolution of a
statistical set of microscopic states with a large number of relaxation times.
The electrocapillary forces are considered as information constraints on the
statistical manifold. The solution curves of Euler-Lagrange equations and the
Jacobi field equations point out contracting pencils of geodesic trajectories
on the statistical manifold, which may change into spreading ones, and
converse. It was shown that the information geometrodynamics of the first-order
phase transition in the Langmuir monolayer finds an appropriate realization
within the Finsler-Lagrange framework
Reconstruction of Bandlimited Functions from Unsigned Samples
We consider the recovery of real-valued bandlimited functions from the
absolute values of their samples, possibly spaced nonuniformly. We show that
such a reconstruction is always possible if the function is sampled at more
than twice its Nyquist rate, and may not necessarily be possible if the samples
are taken at less than twice the Nyquist rate. In the case of uniform samples,
we also describe an FFT-based algorithm to perform the reconstruction. We prove
that it converges exponentially rapidly in the number of samples used and
examine its numerical behavior on some test cases
Serializing the Parallelism in Parallel Communicating Pushdown Automata Systems
We consider parallel communicating pushdown automata systems (PCPA) and
define a property called known communication for it. We use this property to
prove that the power of a variant of PCPA, called returning centralized
parallel communicating pushdown automata (RCPCPA), is equivalent to that of
multi-head pushdown automata. The above result presents a new sub-class of
returning parallel communicating pushdown automata systems (RPCPA) called
simple-RPCPA and we show that it can be written as a finite intersection of
multi-head pushdown automata systems
Crystallization, data collection and data processing of maltose-binding protein (MalE) from the phytopathogen Xanthomonas axonopodis pv. citri
Maltose-binding protein is the periplasmic component of the ABC transporter
responsible for the uptake of maltose/maltodextrins. The Xanthomonas axonopodis
pv. citri maltose-binding protein MalE has been crystallized at 293 Kusing
the hanging-drop vapour-diffusion method. The crystal belonged to the
primitive hexagonal space group P6_122, with unit-cell parameters a = 123.59,
b = 123.59, c = 304.20 Å, and contained two molecules in the asymetric unit. It
diffracted to 2.24 Å resolution
Time dependent superhydrophobicity of drag reducing surfaces
This paper was presented at the 3rd Micro and Nano Flows Conference (MNF2011), which was held at the Makedonia Palace Hotel, Thessaloniki in Greece. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, Aristotle University of Thessaloniki, University of Thessaly, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute.Air can be trapped on the crevices of specially textured hydrophobic surfaces immersed in water. This heterogenous state of wetting in which the water is in contact with both the solid surface and the entrapped
air is not stable. Diffusion of air into the surrounding water leads to gradual reduction in the size and numbers of the air bubbles. The sustainability of the entrapped air on such surfaces is important for many underwater applications in which the surfaces have to remain submersed for longer time periods. In this paper we explore the suitability of different classes of surface textures towards the drag reduction application by evaluating the time required for the disappearance of the air bubbles under hydrostatic conditions. Different repetitive textures consisting of holes, pillars and ridges of different sizes have been generated in silicon, aluminium and brass by isotropic etching, wire EDM and chemical etching respectively. These surfaces were rendered hydrophobic with self-assembled layer of fluorooctyl trichlorosilane for silicon and aluminium surfaces and 1-dodecanethiol for brass surfaces. Using total internal reflection the air bubbles are visualized with the help of a microscope and time lapse photography. Irrespective of the texture, both the size and the number of air pockets were found to decrease with time gradually and eventually disappear. In an attempt to reverse the diffusion we explore the possibility of using electrolysis to generate gases at the
textured surfaces. The gas bubbles are nucleated everywhere on the surface and as they grow they coalesce with each other and get pinned at the texture edges
Adaptação de ferramenta de relatório geoespacial para Zoneamento Ecológico-Econômico da Amazônia Legal.
A ferramenta "relatório", objeto deste trabalho, foi programada originalmente para realizar consultas de terras particulares no Mato Grosso do Sul, via um sistema de informação geográfica web chamado Sistema Interativo de Suporte ao Licenciamento Ambiental (Sisla). O objetivo deste trabalho é adaptá-la para uma função similar no Projeto de Zoneamento Ecológico-Econômico da Amazônia Legal (ZEEAL)
Large scale distribution of total mass versus luminous matter from Baryon Acoustic Oscillations: First search in the SDSS-III BOSS Data Release 10
Baryon Acoustic Oscillations (BAOs) in the early Universe are predicted to
leave an as yet undetected signature on the relative clustering of total mass
versus luminous matter. A detection of this effect would provide an important
confirmation of the standard cosmological paradigm and constrain alternatives
to dark matter as well as non-standard fluctuations such as Compensated
Isocurvature Perturbations (CIPs). We conduct the first observational search
for this effect, by comparing the number-weighted and luminosity-weighted
correlation functions, using the SDSS-III BOSS Data Release 10 CMASS sample.
When including CIPs in our model, we formally obtain evidence at of
the relative clustering signature and a limit that matches the existing upper
limits on the amplitude of CIPs. However, various tests suggest that these
results are not yet robust, perhaps due to systematic biases in the data. The
method developed in this Letter, used with more accurate future data such as
that from DESI, is likely to confirm or disprove our preliminary evidence.Comment: 6 pages, 2 figures, accepted for publication in PR
Weak Gravitational Field in Finsler-Randers Space and Raychaudhuri Equation
The linearized form of the metric of a Finsler - Randers space is studied in
relation to the equations of motion, the deviation of geodesics and the
generalized Raychaudhuri equation are given for a weak gravitational field.
This equation is also derived in the framework of a tangent bundle. By using
Cartan or Berwald-like connections we get some types "gravito -
electromagnetic" curvature. In addition we investigate the conditions under
which a definite Lagrangian in a Randers space leads to Einstein field
equations under the presence of electromagnetic field. Finally, some
applications of the weak field in a generalized Finsler spacetime for
gravitational waves are given.Comment: 22 pages, matches version published in GER
- …
