1,825 research outputs found
Percolation-like Scaling Exponents for Minimal Paths and Trees in the Stochastic Mean Field Model
In the mean field (or random link) model there are points and inter-point
distances are independent random variables. For and in the
limit, let (maximum number of steps
in a path whose average step-length is ). The function
is analogous to the percolation function in percolation theory:
there is a critical value at which becomes
non-zero, and (presumably) a scaling exponent in the sense
. Recently developed probabilistic
methodology (in some sense a rephrasing of the cavity method of Mezard-Parisi)
provides a simple albeit non-rigorous way of writing down such functions in
terms of solutions of fixed-point equations for probability distributions.
Solving numerically gives convincing evidence that . A parallel
study with trees instead of paths gives scaling exponent . The new
exponents coincide with those found in a different context (comparing optimal
and near-optimal solutions of mean-field TSP and MST) and reinforce the
suggestion that these scaling exponents determine universality classes for
optimization problems on random points.Comment: 19 page
On the relationship between standard intersection cuts, lift-and-project cuts, and generalized intersection cuts
We examine the connections between the classes of cuts in the title. We show that lift-and-project (L&P) cuts from a given disjunction are equivalent to generalized intersection cuts from the family of polyhedra obtained by taking positive combinations of the complements of the inequalities of each term of the disjunction. While L&P cuts from split disjunctions are known to be equivalent to standard intersection cuts (SICs) from the strip obtained by complementing the terms of the split, we show that L&P cuts from more general disjunctions may not be equivalent to any SIC. In particular, we give easily verifiable necessary and sufficient conditions for a L&P cut from a given disjunction D to be equivalent to a SIC from the polyhedral counterpart of D. Irregular L&P cuts, i.e. those that violate these conditions, have interesting properties. For instance, unlike the regular ones, they may cut off part of the corner polyhedron associated with the LP solution from which they are derived. Furthermore, they are not exceptional: their frequency exceeds that of regular cuts. A numerical example illustrates some of the above properties. © 2016 Springer-Verlag Berlin Heidelberg and Mathematical Optimization Societ
Iris Codes Classification Using Discriminant and Witness Directions
The main topic discussed in this paper is how to use intelligence for
biometric decision defuzzification. A neural training model is proposed and
tested here as a possible solution for dealing with natural fuzzification that
appears between the intra- and inter-class distribution of scores computed
during iris recognition tests. It is shown here that the use of proposed neural
network support leads to an improvement in the artificial perception of the
separation between the intra- and inter-class score distributions by moving
them away from each other.Comment: 6 pages, 5 figures, Proc. 5th IEEE Int. Symp. on Computational
Intelligence and Intelligent Informatics (Floriana, Malta, September 15-17),
ISBN: 978-1-4577-1861-8 (electronic), 978-1-4577-1860-1 (print
Big Data and Analysis of Data Transfers for International Research Networks Using NetSage
Modern science is increasingly data-driven and collaborative in nature. Many scientific disciplines, including genomics, high-energy physics, astronomy, and atmospheric science, produce petabytes of data that must be shared with collaborators all over the world. The National Science Foundation-supported International Research Network Connection (IRNC) links have been essential to enabling this collaboration, but as data sharing has increased, so has the amount of information being collected to understand network performance. New capabilities to measure and analyze the performance of international wide-area networks are essential to ensure end-users are able to take full advantage of such infrastructure for their big data applications. NetSage is a project to develop a unified, open, privacy-aware network measurement, and visualization service to address the needs of monitoring today's high-speed international research networks. NetSage collects data on both backbone links and exchange points, which can be as much as 1Tb per month. This puts a significant strain on hardware, not only in terms storage needs to hold multi-year historical data, but also in terms of processor and memory needs to analyze the data to understand network behaviors. This paper addresses the basic NetSage architecture, its current data collection and archiving approach, and details the constraints of dealing with this big data problem of handling vast amounts of monitoring data, while providing useful, extensible visualization to end users
An analysis of mixed integer linear sets based on lattice point free convex sets
Split cuts are cutting planes for mixed integer programs whose validity is
derived from maximal lattice point free polyhedra of the form called split sets. The set obtained by adding all
split cuts is called the split closure, and the split closure is known to be a
polyhedron. A split set has max-facet-width equal to one in the sense that
. In this paper
we consider using general lattice point free rational polyhedra to derive valid
cuts for mixed integer linear sets. We say that lattice point free polyhedra
with max-facet-width equal to have width size . A split cut of width
size is then a valid inequality whose validity follows from a lattice point
free rational polyhedron of width size . The -th split closure is the set
obtained by adding all valid inequalities of width size at most . Our main
result is a sufficient condition for the addition of a family of rational
inequalities to result in a polyhedral relaxation. We then show that a
corollary is that the -th split closure is a polyhedron. Given this result,
a natural question is which width size is required to design a finite
cutting plane proof for the validity of an inequality. Specifically, for this
value , a finite cutting plane proof exists that uses lattice point free
rational polyhedra of width size at most , but no finite cutting plane
proof that only uses lattice point free rational polyhedra of width size
smaller than . We characterize based on the faces of the linear
relaxation
Facets for Art Gallery Problems
The Art Gallery Problem (AGP) asks for placing a minimum number of stationary
guards in a polygonal region P, such that all points in P are guarded. The
problem is known to be NP-hard, and its inherent continuous structure (with
both the set of points that need to be guarded and the set of points that can
be used for guarding being uncountably infinite) makes it difficult to apply a
straightforward formulation as an Integer Linear Program. We use an iterative
primal-dual relaxation approach for solving AGP instances to optimality. At
each stage, a pair of LP relaxations for a finite candidate subset of primal
covering and dual packing constraints and variables is considered; these
correspond to possible guard positions and points that are to be guarded.
Particularly useful are cutting planes for eliminating fractional solutions.
We identify two classes of facets, based on Edge Cover and Set Cover (SC)
inequalities. Solving the separation problem for the latter is NP-complete, but
exploiting the underlying geometric structure, we show that large subclasses of
fractional SC solutions cannot occur for the AGP. This allows us to separate
the relevant subset of facets in polynomial time. We also characterize all
facets for finite AGP relaxations with coefficients in {0, 1, 2}.
Finally, we demonstrate the practical usefulness of our approach. Our cutting
plane technique yields a significant improvement in terms of speed and solution
quality due to considerably reduced integrality gaps as compared to the
approach by Kr\"oller et al.Comment: 29 pages, 18 figures, 1 tabl
Packing While Traveling: Mixed Integer Programming for a Class of Nonlinear Knapsack Problems
Packing and vehicle routing problems play an important role in the area of
supply chain management. In this paper, we introduce a non-linear knapsack
problem that occurs when packing items along a fixed route and taking into
account travel time. We investigate constrained and unconstrained versions of
the problem and show that both are NP-hard. In order to solve the problems, we
provide a pre-processing scheme as well as exact and approximate mixed integer
programming (MIP) solutions. Our experimental results show the effectiveness of
the MIP solutions and in particular point out that the approximate MIP approach
often leads to near optimal results within far less computation time than the
exact approach
- …
