948 research outputs found
Clustering of Nonergodic Eigenstates in Quantum Spin Glasses
The two primary categories for eigenstate phases of matter at a finite temperature are many-body localization (MBL) and the eigenstate thermalization hypothesis (ETH). We show that, in the paradigmatic quantum
p
-spin models of the spin-glass theory, eigenstates violate the ETH yet are not MBL either. A mobility edge, which we locate using the forward-scattering approximation and replica techniques, separates the nonergodic phase at a small transverse field from an ergodic phase at a large transverse field. The nonergodic phase is also bounded from above in temperature, by a transition in configuration-space statistics reminiscent of the clustering transition in the spin-glass theory. We show that the nonergodic eigenstates are organized in clusters which exhibit distinct magnetization patterns, as characterized by an eigenstate variant of the Edwards-Anderson order parameter
The many-body localized phase of the quantum random energy model
The random energy model (REM) provides a solvable mean-field description of the equilibrium spin-glass transition. Its quantum sibling (the QREM), obtained by adding a transverse field to the REM, has similar properties and shows a spin-glass phase for sufficiently small transverse field and temperature. In a recent work, some of us have shown that the QREM further exhibits a many-body localization-delocalization (MBLD) transition when viewed as a closed quantum system, evolving according to the quantum dynamics. This phase encloses the familiar equilibrium spin-glass phase. In this paper, we study in detail the MBLD transition within the forward-scattering approximation and replica techniques. The predictions for the transition line are in good agreement with the exact diagonalization numerics. We also observe that the structure of the eigenstates at the MBLD critical point changes continuously with the energy density, raising the possibility of a family of critical theories for the MBLD transition
The Emerging Scholarly Brain
It is now a commonplace observation that human society is becoming a coherent
super-organism, and that the information infrastructure forms its emerging
brain. Perhaps, as the underlying technologies are likely to become billions of
times more powerful than those we have today, we could say that we are now
building the lizard brain for the future organism.Comment: to appear in Future Professional Communication in Astronomy-II
(FPCA-II) editors A. Heck and A. Accomazz
Study protocol to investigate the effect of a lifestyle intervention on body weight, psychological health status and risk factors associated with disease recurrence in women recovering from breast cancer treatment
Background
Breast cancer survivors often encounter physiological and psychological problems related to their diagnosis and treatment that can influence long-term prognosis. The aim of this research is to investigate the effects of a lifestyle intervention on body weight and psychological well-being in women recovering from breast cancer treatment, and to determine the relationship between changes in these variables and biomarkers associated with disease recurrence and survival.
Methods/design
Following ethical approval, a total of 100 patients will be randomly assigned to a lifestyle intervention (incorporating dietary energy restriction in conjunction with aerobic exercise training) or normal care control group. Patients randomised to the dietary and exercise intervention will be given individualised healthy eating dietary advice and written information and attend moderate intensity aerobic exercise sessions on three to five days per week for a period of 24 weeks. The aim of this strategy is to induce a steady weight loss of up to 0.5 Kg each week. In addition, the overall quality of the diet will be examined with a view to (i) reducing the dietary intake of fat to ~25% of the total calories, (ii) eating at least 5 portions of fruit and vegetables a day, (iii) increasing the intake of fibre and reducing refined carbohydrates, and (iv) taking moderate amounts of alcohol. Outcome measures will include body weight and body composition, psychological health status (stress and depression), cardiorespiratory fitness and quality of life. In addition, biomarkers associated with disease recurrence, including stress hormones, estrogen status, inflammatory markers and indices of innate and adaptive immune function will be monitored.
Discussion
This research will provide valuable information on the effectiveness of a practical, easily implemented lifestyle intervention for evoking positive effects on body weight and psychological well-being, two important factors that can influence long-term prognosis in breast cancer survivors. However, the added value of the study is that it will also evaluate the effects of the lifestyle intervention on a range of biomarkers associated with disease recurrence and survival. Considered together, the results should improve our understanding of the potential role that lifestyle-modifiable factors could play in saving or prolonging lives
Cold gas accretion in galaxies
Evidence for the accretion of cold gas in galaxies has been rapidly
accumulating in the past years. HI observations of galaxies and their
environment have brought to light new facts and phenomena which are evidence of
ongoing or recent accretion:
1) A large number of galaxies are accompanied by gas-rich dwarfs or are
surrounded by HI cloud complexes, tails and filaments. It may be regarded as
direct evidence of cold gas accretion in the local universe. It is probably the
same kind of phenomenon of material infall as the stellar streams observed in
the halos of our galaxy and M31. 2) Considerable amounts of extra-planar HI
have been found in nearby spiral galaxies. While a large fraction of this gas
is produced by galactic fountains, it is likely that a part of it is of
extragalactic origin. 3) Spirals are known to have extended and warped outer
layers of HI. It is not clear how these have formed, and how and for how long
the warps can be sustained. Gas infall has been proposed as the origin. 4) The
majority of galactic disks are lopsided in their morphology as well as in their
kinematics. Also here recent accretion has been advocated as a possible cause.
In our view, accretion takes place both through the arrival and merging of
gas-rich satellites and through gas infall from the intergalactic medium (IGM).
The infall may have observable effects on the disk such as bursts of star
formation and lopsidedness. We infer a mean ``visible'' accretion rate of cold
gas in galaxies of at least 0.2 Msol/yr. In order to reach the accretion rates
needed to sustain the observed star formation (~1 Msol/yr), additional infall
of large amounts of gas from the IGM seems to be required.Comment: To appear in Astronomy & Astrophysics Reviews. 34 pages.
Full-resolution version available at
http://www.astron.nl/~oosterlo/accretionRevie
Multiple ITS Copies Reveal Extensive Hybridization within Rheum (Polygonaceae), a Genus That Has Undergone Rapid Radiation
During adaptive radiation events, characters can arise multiple times due to parallel evolution, but transfer of traits through hybridization provides an alternative explanation for the same character appearing in apparently non-sister lineages. The signature of hybridization can be detected in incongruence between phylogenies derived from different markers, or from the presence of two divergent versions of a nuclear marker such as ITS within one individual.In this study, we cloned and sequenced ITS regions for 30 species of the genus Rheum, and compared them with a cpDNA phylogeny. Seven species contained two divergent copies of ITS that resolved in different clades from one another in each case, indicating hybridization events too recent for concerted evolution to have homogenised the ITS sequences. Hybridization was also indicated in at least two further species via incongruence in their position between ITS and cpDNA phylogenies. None of the ITS sequences present in these nine species matched those detected in any other species, which provides tentative evidence against recent introgression as an explanation. Rheum globulosum, previously indicated by cpDNA to represent an independent origin of decumbent habit, is indicated by ITS to be part of clade of decumbent species, which acquired cpDNA of another clade via hybridization. However decumbent and glasshouse morphology are confirmed to have arisen three and two times, respectively.These findings suggested that hybridization among QTP species of Rheum has been extensive, and that a role of hybridization in diversification of Rheum requires investigation
Outer membrane protein folding from an energy landscape perspective
The cell envelope is essential for the survival of Gram-negative bacteria. This specialised membrane is densely packed with outer membrane proteins (OMPs), which perform a variety of functions. How OMPs fold into this crowded environment remains an open question. Here, we review current knowledge about OFMP folding mechanisms in vitro and discuss how the need to fold to a stable native state has shaped their folding energy landscapes. We also highlight the role of chaperones and the β-barrel assembly machinery (BAM) in assisting OMP folding in vivo and discuss proposed mechanisms by which this fascinating machinery may catalyse OMP folding
Police Strategies and Suspect Responses in Real-Life Serious Crime Interviews
This research focuses exclusively on real-life taped interviews with serious crime suspects and examines the strategies used and types of questions asked by police, and suspects’ responses to these. The information source was audio-tape-recorded interviews with 56 suspects. These recordings were obtained from 11 police services across England and Wales and were analysed using a specially designed coding frame. It was found that interviewers employed a range of strategies with presentation of evidence and challenge the most frequently observed. Closed questions were by far the most frequently used, and open questions, although less frequent, were found to occur more during the opening phases of the interviews. The frequency of ineffective question types (e.g. negative, repetitive, multiple) was low. A number of significant associations were observed between interviewer strategies and suspect responses. Rapport/empathy and open-type questions were associated with an increased likelihood of suspects admitting the offence whilst describing trauma, and negative questions were associated with a decreased likelihood
The role of interfacial lipids in stabilizing membrane protein oligomers
Oligomerization of membrane proteins in response to lipid binding has a critical role in many cell-signalling pathways1 but is often difficult to define2 or predict3. Here we report the development of a mass spectrometry platform to determine simultaneously the presence of interfacial lipids and oligomeric stability and to uncover how lipids act as key regulators of membrane-protein association. Evaluation of oligomeric strength for a dataset of 125 α-helical oligomeric membrane proteins reveals an absence of interfacial lipids in the mass spectra of 12 membrane proteins with high oligomeric stability. For the bacterial homologue of the eukaryotic biogenic transporters (LeuT4, one of the proteins with the lowest oligomeric stability), we found a precise cohort of lipids within the dimer interface. Delipidation, mutation of lipid-binding sites or expression in cardiolipin-deficient Escherichia coli abrogated dimer formation. Molecular dynamics simulation revealed that cardiolipin acts as a bidentate ligand, bridging across subunits. Subsequently, we show that for the Vibrio splendidus sugar transporter SemiSWEET5, another protein with low oligomeric stability, cardiolipin shifts the equilibrium from monomer to functional dimer. We hypothesized that lipids are essential for dimerization of the Na+/H+ antiporter NhaA from E. coli, which has the lowest oligomeric strength, but not for the substantially more stable homologous Thermus thermophilus protein NapA. We found that lipid binding is obligatory for dimerization of NhaA, whereas NapA has adapted to form an interface that is stable without lipids. Overall, by correlating interfacial strength with the presence of interfacial lipids, we provide a rationale for understanding the role of lipids in both transient and stable interactions within a range of α-helical membrane proteins, including G-protein-coupled receptors
A Neptune-sized transiting planet closely orbiting a 5–10-million-year-old star
Theories of the formation and early evolution of planetary systems postulate that planets are born in circumstellar disks, and undergo radial migration during and after dissipation of the dust and gas disk from which they formed^1, 2. The precise ages of meteorites indicate that planetesimals—the building blocks of planets—are produced within the first million years of a star’s life^3. Fully formed planets are frequently detected on short orbital periods around mature stars. Some theories suggest that the in situ formation of planets close to their host stars is unlikely and that the existence of such planets is therefore evidence of large-scale migration^4, 5. Other theories posit that planet assembly at small orbital separations may be common^6, 7, 8. Here we report a newly born, transiting planet orbiting its star with a period of 5.4 days. The planet is 50 per cent larger than Neptune, and its mass is less than 3.6 times that of Jupiter (at 99.7 per cent confidence), with a true mass likely to be similar to that of Neptune. The star is 5–10 million years old and has a tenuous dust disk extending outward from about twice the Earth–Sun separation, in addition to the fully formed planet located at less than one-twentieth of the Earth–Sun separation
- …
