21,846 research outputs found

    Superfluid and Mott Insulator phases of one-dimensional Bose-Fermi mixtures

    Get PDF
    We study the ground state phases of Bose-Fermi mixtures in one-dimensional optical lattices with quantum Monte Carlo simulations using the Canonical Worm algorithm. Depending on the filling of bosons and fermions, and the on-site intra- and inter-species interaction, different kinds of incompressible and superfluid phases appear. On the compressible side, correlations between bosons and fermions can lead to a distinctive behavior of the bosonic superfluid density and the fermionic stiffness, as well as of the equal-time Green functions, which allow one to identify regions where the two species exhibit anticorrelated flow. We present here complete phase diagrams for these systems at different fillings and as a function of the interaction parameters.Comment: 8 pages, 12 figure

    Multiquantum well structure with an average electron mobility of 4.0×10^6 cm^2/V s

    Get PDF
    We report a modulation-doped multiquantum well structure which suppresses the usual ambient light effect associated with modulation doping. Ten GaAs quantum wells 300-Å wide are symmetrically modulation doped using Si δ doping at the center of 3600-Å-wide Al0.1Ga0.9As barriers. The low field mobility of each well is 4.0×10^6 cm/V s at a density of 6.4×10^10 cm^−2 measured at 0.3 K either in the dark, or during, or after, exposure to light. This mobility is an order of magnitude improvement over previous work on multiwells

    Experimental study of optimal measurements for quantum state tomography

    Full text link
    Quantum tomography is a critically important tool to evaluate quantum hardware, making it essential to develop optimized measurement strategies that are both accurate and efficient. We compare a variety of strategies using nearly pure test states. Those that are informationally complete for all states are found to be accurate and reliable even in the presence of errors in the measurements themselves, while those designed to be complete only for pure states are far more efficient but highly sensitive to such errors. Our results highlight the unavoidable tradeoffs inherent to quantum tomography.Comment: 5 pages, 3 figure

    Anomaly of Film Porosity Dependence on Deposition Rate

    Full text link
    This Letter reports an anomaly of film porosity dependence on deposition rate during physical vapor deposition - the porosity increases as deposition rate decreases. Using glancing angle deposition of Cu on SiO2 substrate, the authors show that the Cu film consists of well separated nanorods when the deposition rate is 1 nm/second, and that the Cu films consists of a more uniform (or lower porosity) film when the deposition rate is 6 nm/second; all other deposition conditions remain the same. This anomaly is the result of interplay among substrate non-wetting, density of Cu nuclei on the substrate, and the minimum diameter of nanorods
    corecore