465 research outputs found

    Mechanisms of Synapse formation and Maintenance: Insights From the Developing and Diseased Nervous System

    Get PDF
    ABSTRACT MECHANISMS OF SYNAPSE FORMATION AND MAINTENANCE: INSIGHTS FROM THE DEVELOPING AND DISEASED NERVOUS SYSTEM Ethan G. Hughes Rita J. Balice-Gordon, Ph.D. The formation and maintenance of synapses is essential for the central nervous system (CNS) to function. In the developing nervous system, the assembly of synaptic circuits is a complex and dynamic process, requiring the coordinated exchange of signals between pre- and postsynaptic neurons and surrounding glia. The maintenance and modulation of synaptic connections is required for normal CNS function and ongoing plasticity. The structural and functional integrity of synaptic connections is often modified or lost in the diseased nervous system, resulting in profound cognitive and behavioral deficits. While some aspects of the mechanisms underlying the formation, maintenance and plasticity of CNS synapses in the developing and diseased nervous system have been elucidated, many more remain to be understood. In my thesis work, I have examined the role of astrocytes in the development of GABAergic hippocampal synapses in in vitro models. I have also examined the maintenance of glutamatergic synapses in in vitro and in vivo models of anti-NMDAR encephalitis, an immune-mediated disorder of memory and behavior. First, I demonstrate that secreted factors released from astrocytes specifically increase GABAergic axon length, branching, and synaptogenesis, that these effects are not mediated by several well-known candidates, and that the secreted factors from astrocytes are proteins. Second, I examined the identity of the proteins released from astrocytes that affect GABAergic neurons using size fractionation, mass spectroscopy, and computational analyses. Third, I examined the cellular and synaptic mechanisms underlying anti-NMDAR encephalitis and investigated the effects of autoantibodies from patients with this disorder on the maintenance and function of CNS excitatory synapses. Together, my work extends our understanding of how neuron-glial communication modulates the formation of synapses in the developing brain, and how the disruption of synapse maintenance may underlie cognitive deficits in the diseased nervous system

    Presynaptic to postsynaptic relationships of the neuromuscular junction are held constant across age and muscle fiber type

    Get PDF
    The neuromuscular junction (NMJ) displays considerable morphological plasticity as a result of differences in activity level, as well as aging. This is true of both presynaptic and postsynaptic components of the NMJ. Yet, despite these variations in NMJ structure, proper presynaptic to postsynaptic coupling must be maintained in order for effective cell-to-cell communication to occur. Here, we examined the NMJs of muscles with different activity profiles (soleus and EDL), on both slow- and fast-twitch fibers in those muscles, and among young adult and aged animals. We used immunofluorescent techniques to stain nerve terminal branching, presynaptic vesicles, postsynaptic receptors, as well as fast/slow myosin heavy chain. Confocal microscopy was used to capture images of NMJs for later quantitative analysis. Data were subjected to a two-way ANOVA (main effects for myofiber type and age), and in the event of a significant (p \u3c 0.05) F ratio, a post hoc analysis was performed to identify pairwise differences. Results showed that the NMJs of different myofiber types routinely displayed differences in presynaptic and postsynaptic morphology (although the effect on NMJ size was reversed in the soleus and the EDL), but presynaptic to postsynaptic relationships were tightly maintained. Moreover, the ratio of presynaptic vesicles relative to nerve terminal branch length also was similar despite differences in muscles, their fiber type, and age. Thus, in the face of considerable overall structural differences of the NMJ, presynaptic to postsynaptic coupling remains constant, as does the relationship between presynaptic vesicles and the nerve terminal branches that support them. (c) 2013 Wiley Periodicals, Inc

    Serial Search Based Code Acquisition in the Cooperative MIMO Aided DS-CDMA Downlink

    Get PDF
    Full text of this paper is not available in UHRAFocal blockade of postsynaptic acetylcholine receptors (AChRs) in a small region of the neuromuscular junction may cause long-term synapse elimination at that site. Blockade of the whole junction does not cause synapse loss, indicating that it is the contrast in postsynaptic activity between the blocked and unblocked regions which causes withdrawal of the synaptic terminals. This phenomenon can be explained by the dual role of calcium, both in controlling AChR gene transcription and influencing AChR aggregation. A computational model is provided and the stability of the solutions is confirmed by theoretical analysis and computer simulation

    Mechanisms Underlying Metabolic and Neural Defects in Zebrafish and Human Multiple Acyl-CoA Dehydrogenase Deficiency (MADD)

    Get PDF
    In humans, mutations in electron transfer flavoprotein (ETF) or electron transfer flavoprotein dehydrogenase (ETFDH) lead to MADD/glutaric aciduria type II, an autosomal recessively inherited disorder characterized by a broad spectrum of devastating neurological, systemic and metabolic symptoms. We show that a zebrafish mutant in ETFDH, xavier, and fibroblast cells from MADD patients demonstrate similar mitochondrial and metabolic abnormalities, including reduced oxidative phosphorylation, increased aerobic glycolysis, and upregulation of the PPARG-ERK pathway. This metabolic dysfunction is associated with aberrant neural proliferation in xav, in addition to other neural phenotypes and paralysis. Strikingly, a PPARG antagonist attenuates aberrant neural proliferation and alleviates paralysis in xav, while PPARG agonists increase neural proliferation in wild type embryos. These results show that mitochondrial dysfunction, leading to an increase in aerobic glycolysis, affects neurogenesis through the PPARG-ERK pathway, a potential target for therapeutic intervention

    Role of Myosin Va in the Plasticity of the Vertebrate Neuromuscular Junction In Vivo

    Get PDF
    Background: Myosin Va is a motor protein involved in vesicular transport and its absence leads to movement disorders in humans (Griscelli and Elejalde syndromes) and rodents (e.g. dilute lethal phenotype in mice). We examined the role of myosin Va in the postsynaptic plasticity of the vertebrate neuromuscular junction (NMJ). Methodology/Principal Findings: Dilute lethal mice showed a good correlation between the propensity for seizures, and fragmentation and size reduction of NMJs. In an aneural C2C12 myoblast cell culture, expression of a dominant-negative fragment of myosin Va led to the accumulation of punctate structures containing the NMJ marker protein, rapsyn-GFP, in perinuclear clusters. In mouse hindlimb muscle, endogenous myosin Va co-precipitated with surface-exposed or internalised acetylcholine receptors and was markedly enriched in close proximity to the NMJ upon immunofluorescence. In vivo microscopy of exogenous full length myosin Va as well as a cargo-binding fragment of myosin Va showed localisation to the NMJ in wildtype mouse muscles. Furthermore, local interference with myosin Va function in live wildtype mouse muscles led to fragmentation and size reduction of NMJs, exclusion of rapsyn-GFP from NMJs, reduced persistence of acetylcholine receptors in NMJs and an increased amount of punctate structures bearing internalised NMJ proteins. Conclusions/Significance: In summary, our data show a crucial role of myosin Va for the plasticity of live vertebrate neuromuscular junctions and suggest its involvement in the recycling of internalised acetylcholine receptors back to th

    Effect of Resistance Training on Neuromuscular Junctions of Young and Aged Muscles Featuring Different Recruitment Patterns

    Get PDF
    To examine the effects of aging on neuromuscular adaptations to resistance training (i.e., weight lifting), young (9 months of age) and aged (20 months of age) male rats either participated in a 7-week ladder climbing protocol with additional weight attached to their tails or served as controls (n=10/group). At the conclusion, rats were euthanized and hindlimb muscles were quickly removed and frozen for later analysis. Longitudinal sections of the soleus and plantaris muscles were collected, and pre- and postsynaptic features of neuromuscular junctions (NMJs) were visualized with immunofluorescence staining procedures. Cross-sections of the same muscles were histochemically stained to determine myofiber profiles (fiber type and size). Statistical analysis was by two-way ANOVA (main effects of age and treatment) with significance set at P0.05. Results revealed that training-induced remodeling of NMJs was evident only at the postsynaptic endplate region of soleus fast-twitch myofibers. In contrast, aging was associated with pre- and postsynaptic remodeling in fast- and slow-twitch myofibers of the plantaris. Although both the soleus and the plantaris muscles failed to display either training or aging-related alterations in myofiber size, aged plantaris muscles exhibited an increased expression of type I (slow-twitch) myofibers in conjunction with a reduced percentage of type II (fast-twitch) myofibers, suggesting early stages of sarcopenia. These data demonstrate the high degree of specificity of synaptic modifications made in response to exercise and aging and that the sparsely recruited plantaris is more vulnerable to the effects of aging than the more frequently recruited soleus muscle. (c) 2014 Wiley Periodicals, Inc

    A Role of Tyrosine Phosphatase in Acetylcholine Receptor Cluster Dispersal and Formation

    Get PDF
    Innervation of the skeletal muscle involves local signaling, leading to acetylcholine receptor (AChR) clustering, and global signaling, manifested by the dispersal of preexisting AChR clusters (hot spots). Receptor tyrosine kinase (RTK) activation has been shown to mediate AChR clustering. In this study, the role of tyrosine phosphatase (PTPase) in the dispersal of hot spots was examined. Hot spot dispersal in cultured Xenopus muscle cells was initiated immediately upon the presentation of growth factor–coated beads that induce both AChR cluster formation and dispersal. Whereas the density of AChRs decreased with time, the fine structure of the hot spot remained relatively constant. Although AChR, rapsyn, and phosphotyrosine disappeared, a large part of the original hot spot–associated cytoskeleton remained. This suggests that the dispersal involves the removal of a key linkage between the receptor and its cytoskeletal infrastructure. The rate of hot spot dispersal is inversely related to its distance from the site of synaptic stimulation, implicating the diffusible nature of the signal. PTPase inhibitors, such as pervanadate or phenylarsine oxide, inhibited hot spot dispersal. In addition, they also affected the formation of new clusters in such a way that AChR microclusters extended beyond the boundary set by the clustering stimuli. Furthermore, by introducing a constitutively active PTPase into cultured muscle cells, hot spots were dispersed in a stimulus- independent fashion. This effect of exogenous PTPase was also blocked by pervanadate. These results implicate a role of PTPase in AChR cluster dispersal and formation. In addition to RTK activation, synaptic stimulation may also activate PTPase which acts globally to destabilize preexisting AChR hot spots and locally to facilitate AChR clustering in a spatially discrete manner by countering the action of RTKs
    corecore