589 research outputs found
Generic Encodings of Constructor Rewriting Systems
Rewriting is a formalism widely used in computer science and mathematical
logic. The classical formalism has been extended, in the context of functional
languages, with an order over the rules and, in the context of rewrite based
languages, with the negation over patterns. We propose in this paper a concise
and clear algorithm computing the difference over patterns which can be used to
define generic encodings of constructor term rewriting systems with negation
and order into classical term rewriting systems. As a direct consequence,
established methods used for term rewriting systems can be applied to analyze
properties of the extended systems. The approach can also be seen as a generic
compiler which targets any language providing basic pattern matching
primitives. The formalism provides also a new method for deciding if a set of
patterns subsumes a given pattern and thus, for checking the presence of
useless patterns or the completeness of a set of patterns.Comment: Added appendix with proofs and extended example
Dark energy constraints and correlations with systematics from CFHTLS weak lensing, SNLS supernovae Ia and WMAP5
We combine measurements of weak gravitational lensing from the CFHTLS-Wide
survey, supernovae Ia from CFHT SNLS and CMB anisotropies from WMAP5 to obtain
joint constraints on cosmological parameters, in particular, the dark energy
equation of state parameter w. We assess the influence of systematics in the
data on the results and look for possible correlations with cosmological
parameters.
We implement an MCMC algorithm to sample the parameter space of a flat CDM
model with a dark-energy component of constant w. Systematics in the data are
parametrised and included in the analysis. We determine the influence of
photometric calibration of SNIa data on cosmological results by calculating the
response of the distance modulus to photometric zero-point variations. The weak
lensing data set is tested for anomalous field-to-field variations and a
systematic shape measurement bias for high-z galaxies.
Ignoring photometric uncertainties for SNLS biases cosmological parameters by
at most 20% of the statistical errors, using supernovae only; the parameter
uncertainties are underestimated by 10%. The weak lensing field-to-field
variance pointings is 5%-15% higher than that predicted from N-body
simulations. We find no bias of the lensing signal at high redshift, within the
framework of a simple model. Assuming a systematic underestimation of the
lensing signal at high redshift, the normalisation sigma_8 increases by up to
8%. Combining all three probes we obtain -0.10<1+w<0.06 at 68% confidence
(-0.18<1+w<0.12 at 95%), including systematic errors. Systematics in the data
increase the error bars by up to 35%; the best-fit values change by less than
0.15sigma. [Abridged]Comment: 14 pages, 10 figures. Revised version, matches the one to be
published in A&A. Modifications have been made corresponding to the referee's
suggestions, including reordering of some section
Two superluminous supernovae from the early universe discovered by the Supernova Legacy Survey
We present spectra and lightcurves of SNLS 06D4eu and SNLS 07D2bv, two
hydrogen-free superluminous supernovae discovered by the Supernova Legacy
Survey. At z = 1.588, SNLS 06D4eu is the highest redshift superluminous SN with
a spectrum, at M_U = -22.7 is one of the most luminous SNe ever observed, and
gives a rare glimpse into the restframe ultraviolet where these supernovae put
out their peak energy. SNLS 07D2bv does not have a host galaxy redshift, but
based on the supernova spectrum, we estimate it to be at z ~ 1.5. Both
supernovae have similar observer-frame griz lightcurves, which map to restframe
lightcurves in the U-band and UV, rising in ~ 20 restframe days or longer, and
declining over a similar timescale. The lightcurves peak in the shortest
wavelengths first, consistent with an expanding blackbody starting near 15,000
K and steadily declining in temperature. We compare the spectra to theoretical
models, and identify lines of C II, C III, Fe III, and Mg II in the spectrum of
SNLS 06D4eu and SCP 06F6, and find that they are consistent with an expanding
explosion of only a few solar masses of carbon, oxygen, and other trace metals.
Thus the progenitors appear to be related to those suspected for SNe Ic. A high
kinetic energy, 10^52 ergs, is also favored. Normal mechanisms of powering
core- collapse or thermonuclear supernovae do not seem to work for these
supernovae. We consider models powered by 56Ni decay and interaction with
circumstellar material, but find that the creation and spin-down of a magnetar
with a period of 2ms, magnetic field of 2 x 10^14 Gauss, and a 3 solar mass
progenitor provides the best fit to the data.Comment: ApJ, accepted, 43 pages, 15 figure
A Semi-Empirical Model of the Infra-Red Universe
We present a simple model of the infra-red universe, based as much as
possible on local observations. We model the luminosity and number evolution of
disk and starburst galaxies, including the effects of dust, gas and spectral
evolution. Although simple, our approach is able to reproduce observations of
galaxy number counts and the infra-red and sub-millimeter extra-galactic
backgrounds. It provides a useful probe of galaxy formation and evolution out
to high redshift. The model demonstrates the significant role of the starburst
population and predicts high star formation rates at redshifts 3 to 4,
consistent with recent extinction-corrected observations of Lyman break
galaxies. Starbursting galaxies are predicted to dominate the current SCUBA
surveys. Their star formation is driven predominantly by strong tidal
interactions and mergers of galaxies. This leads to the creation of spheroidal
stellar systems, which may act as the seeds for disk formation as gas infalls.
We predict the present-day baryonic mass in bulges and halos is comparable to
that in disks. From observations of the extra-galactic background, the model
predicts that the vast majority of star formation in the Universe occurs at
z<5.Comment: 23 pages including 9 figures. To appear in ApJ. Model results
available electronically at http://astro.berkeley.edu/~jt/irmodel.htm
Type Ia Supernovae Rates and Galaxy Clustering from the CFHT Supernova Legacy Survey
The Canada-France-Hawaii Telescope Supernova Legacy Survey (SNLS) has created
a large homogeneous database of intermediate redshift (0.2 < z < 1.0) type Ia
supernovae (SNe Ia). The SNLS team has shown that correlations exist between SN
Ia rates, properties, and host galaxy star formation rates. The SNLS SN Ia
database has now been combined with a photometric redshift galaxy catalog and
an optical galaxy cluster catalog to investigate the possible influence of
galaxy clustering on the SN Ia rate, over and above the expected effect due to
the dependence of SFR on clustering through the morphology-density relation. We
identify three cluster SNe Ia, plus three additional possible cluster SNe Ia,
and find the SN Ia rate per unit mass in clusters at intermediate redshifts is
consistent with the rate per unit mass in field early-type galaxies and the SN
Ia cluster rate from low redshift cluster targeted surveys. We also find the
number of SNe Ia in cluster environments to be within a factor of two of
expectations from the two component SNIa rate model.Comment: 21 pages, 2 figures, 6 tables, accepted for publication in A
- …
