247 research outputs found
Key mechanistic features of swelling and blistering of helium-ion-irradiated tungsten
Helium-ion-induced swelling and blistering of single-crystal tungsten is investigated using a Helium Ion Microscope for site-specific dose-controlled irradiation (at 25 keV) with analysis by Helium Ion Microscopy, Atomic Force Microscopy and Transmission Electron Microscopy (cross-sectioning by Focused Ion Beam milling). We show that the blister cavity forms at a depth close to the simulated helium peak and that nanobubbles coalesce to form nanocracks within the envelope of the ion stopping range, swelling the blister shell. These results provide the first direct experimental evidence for the interbubble fracture mechanism proposed in the framework of the gas pressure model for blister formation
An eigenvalue-eigenvector method for solving a system of fractional differential equations with uncertainty
A new method is proposed for solving systems of fuzzy fractional differential equations (SFFDEs) with fuzzy initial conditions involving fuzzy Caputo differentiability. For this purpose, three cases are introduced based on the eigenvalue-eigenvector approach; then it is shown that the solution of system of fuzzy fractional differential equations is vector of fuzzy-valued functions. Then the method is validated by solving several examples
Recommended from our members
Desorption Kinetics of H2O, H2, CO, and CO2 from Silica Reinforced Polysiloxane
We performed temperature programmed desorption up to 500K on silica-reinforced polysiloxane in both solid and foamed forms (M9787 and M9750 respectively). Our data show that H{sub 2}O was the dominant desorbing species in both forms of silicone (on the order of 100 {micro}g of physisorbed water and 900 {micro}g of chemisorbed water per gram of polymer), which are expected to be very hydrophilic when dehydrated. Detailed studies of the TPD spectra of H{sub 2}O from the silicones and from the fumed silica fillers suggest that H{sub 2}O molecules preferentially adsorbed on the surface of silica particles contained in the silicones with activation energies of desorption of 15 {+-} 3 kcal/mol and 50 {+-} 10 kcal/mol. There was strong evidence of H{sub 2} desorption below 400K from the silicones. The equivalent concentration of H{sub 2} in the silicones was 0.44 {micro}g of H{sub 2} per gram of silicone. Other species desorbing from the silicones were CO, and CO{sub 2} with concentrations on the order of 2.5 {micro}g, and 1.6 {micro}g per gram of silicone and activation energies of desorption of 10 {+-} 2 kcal/mol and 9.5 {+-} 1.5 kcal/mol, respectively
Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.
The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
Scanning Tunneling Microscope Images of Adenine and Thymine at Atomic Resolution
The scanning tunneling microscope has been used to obtain images of DNA that reveal its major and minor grooves and the direction of helical coiling, but sufficient resolution has not yet been achieved to identify its bases. To determine if this technology is capable of identifying individual DNA bases, we have examined the molecular arrangements of adenine and thymine attached to the basal plane of highly oriented pyrolytic graphite. Both molecules form highly organized lattices following deposition on heated graphite. Lattice dimensions, structural periodicities, and the epitaxy of adenine and thymine molecules with respect to the basal plane of graphite have been determined. Images of these molecules at atomic resolution reveal that the aromatic regions are strongly detected in both molecules while the various side-groups are not well-resolved. These studies provide the first evidence that tunneling microscopy can be used to discriminate between purines and pyrimidines
Diffraction techniques and vibrational spectroscopy opportunities to characterise bones
From a histological point of view, bones that allow body mobility and protection of internal organs consist not only of different organic and inorganic tissues but include vascular and nervous elements as well. Moreover, due to its ability to host different ions and cations, its mineral part represents an important reservoir, playing a key role in the metabolic activity of the organism. From a structural point of view, bones can be considered as a composite material displaying a hierarchical structure at different scales. At the nanometre scale, an organic part, i.e. collagen fibrils and an inorganic part, i.e. calcium phosphate nanocrystals are intimately mixed to assure particular mechanical properties
Recommended from our members
Viscoelastic properties of healthy human artery measured in saline solution by AFM based indentation technique
Using an Atomic Force Microscope with an attachment for indentation, we have measured local, in vitro mechanical properties of healthy femoral artery tissue held in saline solution. The elastic modulus (34. 3 kPa) and viscoelastic response ({tau}sub{epsilon} {equals} 16.9 s and {tau}sub{sigma} {equals} 29.3 s) of the unstretched,intimal vessel wall have been determined using Sneddon theory and a three element model(standard linear solid) for viscoelastic materials. The procedures necessary to employ the indenting attachment to detect elastic moduli in the kPa range in liquid are described
On Solutions of Linear Fractional Differential Equations with Uncertainty
The solutions of linear fuzzy fractional differential equations (FFDEs) under the Caputo differentiability have been investigated. To this end, the fuzzy Laplace transform was used to obtain the solutions of FFDEs. Then, some new results regarding the relation between some types of differentiability have been obtained. Finally, some applicable examples are solved in order to show the ability of the proposed method
- …
