247 research outputs found

    Key mechanistic features of swelling and blistering of helium-ion-irradiated tungsten

    Get PDF
    Helium-ion-induced swelling and blistering of single-crystal tungsten is investigated using a Helium Ion Microscope for site-specific dose-controlled irradiation (at 25 keV) with analysis by Helium Ion Microscopy, Atomic Force Microscopy and Transmission Electron Microscopy (cross-sectioning by Focused Ion Beam milling). We show that the blister cavity forms at a depth close to the simulated helium peak and that nanobubbles coalesce to form nanocracks within the envelope of the ion stopping range, swelling the blister shell. These results provide the first direct experimental evidence for the interbubble fracture mechanism proposed in the framework of the gas pressure model for blister formation

    An eigenvalue-eigenvector method for solving a system of fractional differential equations with uncertainty

    Get PDF
    A new method is proposed for solving systems of fuzzy fractional differential equations (SFFDEs) with fuzzy initial conditions involving fuzzy Caputo differentiability. For this purpose, three cases are introduced based on the eigenvalue-eigenvector approach; then it is shown that the solution of system of fuzzy fractional differential equations is vector of fuzzy-valued functions. Then the method is validated by solving several examples

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    Scanning Tunneling Microscope Images of Adenine and Thymine at Atomic Resolution

    Get PDF
    The scanning tunneling microscope has been used to obtain images of DNA that reveal its major and minor grooves and the direction of helical coiling, but sufficient resolution has not yet been achieved to identify its bases. To determine if this technology is capable of identifying individual DNA bases, we have examined the molecular arrangements of adenine and thymine attached to the basal plane of highly oriented pyrolytic graphite. Both molecules form highly organized lattices following deposition on heated graphite. Lattice dimensions, structural periodicities, and the epitaxy of adenine and thymine molecules with respect to the basal plane of graphite have been determined. Images of these molecules at atomic resolution reveal that the aromatic regions are strongly detected in both molecules while the various side-groups are not well-resolved. These studies provide the first evidence that tunneling microscopy can be used to discriminate between purines and pyrimidines

    Diffraction techniques and vibrational spectroscopy opportunities to characterise bones

    Get PDF
    From a histological point of view, bones that allow body mobility and protection of internal organs consist not only of different organic and inorganic tissues but include vascular and nervous elements as well. Moreover, due to its ability to host different ions and cations, its mineral part represents an important reservoir, playing a key role in the metabolic activity of the organism. From a structural point of view, bones can be considered as a composite material displaying a hierarchical structure at different scales. At the nanometre scale, an organic part, i.e. collagen fibrils and an inorganic part, i.e. calcium phosphate nanocrystals are intimately mixed to assure particular mechanical properties

    On Solutions of Linear Fractional Differential Equations with Uncertainty

    Get PDF
    The solutions of linear fuzzy fractional differential equations (FFDEs) under the Caputo differentiability have been investigated. To this end, the fuzzy Laplace transform was used to obtain the solutions of FFDEs. Then, some new results regarding the relation between some types of differentiability have been obtained. Finally, some applicable examples are solved in order to show the ability of the proposed method
    corecore