108 research outputs found
Recommended from our members
The Horace Brown Medal. Forever in focus: researches in malting and brewing sciences
The paper reviews a career of more than forty years researching topics in malting and brewing science. Some themes attracted particularly close attention, namely the endosperm cell walls of barley, dimethyl sulphide, flavour stability, foam and the impact of beer on health. However, the scope has been far broader than that. The underlying imperative was to pursue research that was close to application and always focussed on a specific need in the processes involved in the production of beer. © 2020 The Institute of Brewing & Distilling
Is beer a source of prebiotics?
Beer contains low-molecular-weight β-linked oligosaccharides that originate from the degradation of β-glucan in the barley cell wall during malting and mashing. Over 90% of these oligosaccharides contain three or four glucosyl units. They remain intact through a static oral, gastric and small intestinal in vitro human digestive system model, indicating that they should be available to beneficial organisms known to be present in the human large intestine. Several intestine-associated Lactobacillus strains were shown to be capable of growth on these β-linked oligosaccharides, thereby leading us to tentatively propose that these compounds may represent prebiotics. Copyright © 2017 The Institute of Brewing & Distilling
Recommended from our members
The application of metabolomics to ascertain the significance of prolonged maturation in the production of lager-style beers
NMR-focused metabolomic analysis has been employed to ascertain the extent to which a diversity of non-volatile substances change in level during maturation and storage on a pilot and commercial scale. No substantive changes were observed, leading to the conclusion that, once materials such as vicinal diketones and acetaldehyde have been dealt with, there is no merit in the prolonged storage of beer. © 2019 The Institute of Brewing & Distilling
The Maltase Involved in Starch Metabolism in Barley Endosperm Is Encoded by a Single Gene
During germination and early seedling growth of barley (Hordeum vulgare), maltase is responsible for the conversion of maltose produced by starch degradation in the endosperm to glucose for seedling growth. Despite the potential relevance of this enzyme for malting and the production of alcoholic beverages, neither the nature nor the role of maltase is fully understood. Although only one gene encoding maltase has been identified with certainty, there is evidence for the existence of other genes and for multiple forms of the enzyme. It has been proposed that maltase may be involved directly in starch granule degradation as well as in maltose hydrolysis. The aim of our work was to discover the nature of maltase in barley endosperm. We used ion exchange chromatography to fractionate maltase activity from endosperm of young seedlings, and we partially purified activity for protein identification. We compared maltase activity in wild-type barley and transgenic lines with reduced expression of the previously-characterised maltase gene Agl97, and we used genomic and transcriptomic information to search for further maltase genes. We show that all of the maltase activity in the barley endosperm can be accounted for by a single gene, Agl97. Multiple forms of the enzyme most likely arise from proteolysis and other post-translational modifications
New herbal bitter liqueur with high antioxidant activity and lower sugar content: innovative approach to liqueurs formulations
Herbal liqueurs are spirits with numerous functional properties, due to the presence of bioactive extractable compounds deriving from herbs. The aim of this study was to obtain new herbal bitter liqueur (HBL) on the basis of twelve selected bitter and aromatic plants extracts, with an optimal sensory profile for consumer acceptance. Also, the determination of optimal sugar content in HBL was done. Furthermore, antioxidant (AO) capacity and total phenolic content (TPC) of HBL was evaluated and compared to similar commercial herbal spirits. Among five tested formulations, assessed by 9-point hedonic scale, HBL with the ratio of bitter and aromatic plants 1:4 was the most acceptable. Ideal concentration of sugar in HBL, determined using a just-about-right scale, was found to be 80.32 g/l of sucrose, which is approximately 20% less than the minimum stipulated by European Union Regulation and several times lower than in the majority of commercial liqueurs. Obtained result indicates the possibility of sugar reduction in liqueurs, and suggests the need to carry out sensory analysis before production of these high-calorie beverages. Radical scavenging ability against DPPH and ABTS radicals, as well as ferric reducing antioxidant power and TPC of HBL were convincingly superior in comparison to similar commercial herbal alcoholic beverages. High correlation coefficients between TPC and other assays applied strongly support the significant role of the polyphenols in the total AO capacity of the HBL and other tested commercial herbal spirits. Headspace GC/MS revealed that the most abundant terpenes were menthone (3.75%), eucalyptol (3.42%) and menthol (3.10%), whereas methanol was present in a small amount (4.97 mg/l)
Transcriptome analysis of a barley breeding program examines gene expression diversity and reveals target genes for malting quality improvement
Comparative genome analysis and genome-guided physiological analysis of Roseobacter litoralis
<p>Abstract</p> <p>Background</p> <p><it>Roseobacter litoralis </it>OCh149, the type species of the genus, and <it>Roseobacter denitrificans </it>OCh114 were the first described organisms of the <it>Roseobacter </it>clade, an ecologically important group of marine bacteria. Both species were isolated from seaweed and are able to perform aerobic anoxygenic photosynthesis.</p> <p>Results</p> <p>The genome of <it>R. litoralis </it>OCh149 contains one circular chromosome of 4,505,211 bp and three plasmids of 93,578 bp (pRLO149_94), 83,129 bp (pRLO149_83) and 63,532 bp (pRLO149_63). Of the 4537 genes predicted for <it>R. litoralis</it>, 1122 (24.7%) are not present in the genome of <it>R. denitrificans</it>. Many of the unique genes of <it>R. litoralis </it>are located in genomic islands and on plasmids. On pRLO149_83 several potential heavy metal resistance genes are encoded which are not present in the genome of <it>R. denitrificans</it>. The comparison of the heavy metal tolerance of the two organisms showed an increased zinc tolerance of <it>R. litoralis</it>. In contrast to <it>R. denitrificans</it>, the photosynthesis genes of <it>R. litoralis </it>are plasmid encoded. The activity of the photosynthetic apparatus was confirmed by respiration rate measurements, indicating a growth-phase dependent response to light. Comparative genomics with other members of the <it>Roseobacter </it>clade revealed several genomic regions that were only conserved in the two <it>Roseobacter </it>species. One of those regions encodes a variety of genes that might play a role in host association of the organisms. The catabolism of different carbon and nitrogen sources was predicted from the genome and combined with experimental data. In several cases, e.g. the degradation of some algal osmolytes and sugars, the genome-derived predictions of the metabolic pathways in <it>R. litoralis </it>differed from the phenotype.</p> <p>Conclusions</p> <p>The genomic differences between the two <it>Roseobacter </it>species are mainly due to lateral gene transfer and genomic rearrangements. Plasmid pRLO149_83 contains predominantly recently acquired genetic material whereas pRLO149_94 was probably translocated from the chromosome. Plasmid pRLO149_63 and one plasmid of <it>R. denitrifcans </it>(pTB2) seem to have a common ancestor and are important for cell envelope biosynthesis. Several new mechanisms of substrate degradation were indicated from the combination of experimental and genomic data. The photosynthetic activity of <it>R. litoralis </it>is probably regulated by nutrient availability.</p
Enzymes, egg white, and eccentrics: Memories from 37 years of research in the brewing industry
Recommended from our members
Dimethyl sulfide - Significance, origins, and control
Dimethyl sulfide (DMS) is a substantial contributor to the aroma of many lager-style beers. Opinion varies on its desirability. It can be derived in beer from two sources: the thermal decomposition of S-methylmethionine (SMM) produced in the embryo of barley during germination, or the reduction of dimethyl sulfoxide (DMSO, derived from the breakdown of SMM during the curing of malt) by yeast. The enzyme that effects DMSO reduction is a reductase whose primary function is the reduction of methionine sulfoxide and which competes for reducing power with several other cellular systems. Control of DMS production from SMM is achieved by specifying precursor levels in malt, by attending to the vigor and duration of the boil, and by controlling the length of the whirlpool stand. Control of DMS production from yeast is achieved by specifying yeast strain, wort gravity, free amino nitrogen and pH, the type of fermenter (ergo the extent of volatilization), and the fermentation temperature
- …
