11,896 research outputs found
A Simulation Model Outline for the Hungarian Forest Sector
The model presented in this paper describes the structure of the Hungarian forest sector. The planning of the sector at a national and company level as well as the mechanism of regulation concerning production, investments, and consumption are also investigated and the exports and imports linked.
One of the most important objectives is to create this model in order to study the behavior of the system so as to aid the decision making both in strategic and tactical areas. Apart from forestry the model also includes the wood processing activities
Fast and robust spin manipulation in a quantum dot by electric fields
We apply an invariant-based inverse engineering method to control by
time-dependent electric fields electron spin dynamics in a quantum dot with
spin-orbit coupling in a weak magnetic field. The designed electric fields
provide a shortcut to adiabatic processes that flips the spin rapidly, thus
avoiding decoherence effects. This approach, being robust with respect to the
device-dependent noise, can open new possibilities for the spin-based quantum
information processing.Comment: 7 pages, 6 figures, with supplemental material. Errors in the
published version have been correcte
SPORT: A new sub-nanosecond time-resolved instrument to study swift heavy ion-beam induced luminescence - Application to luminescence degradation of a fast plastic scintillator
We developed a new sub-nanosecond time-resolved instrument to study the
dynamics of UV-visible luminescence under high stopping power heavy ion
irradiation. We applied our instrument, called SPORT, on a fast plastic
scintillator (BC-400) irradiated with 27-MeV Ar ions having high mean
electronic stopping power of 2.6 MeV/\mu m. As a consequence of increasing
permanent radiation damages with increasing ion fluence, our investigations
reveal a degradation of scintillation intensity together with, thanks to the
time-resolved measurement, a decrease in the decay constant of the
scintillator. This combination indicates that luminescence degradation
processes by both dynamic and static quenching, the latter mechanism being
predominant. Under such high density excitation, the scintillation
deterioration of BC-400 is significantly enhanced compared to that observed in
previous investigations, mainly performed using light ions. The observed
non-linear behaviour implies that the dose at which luminescence starts
deteriorating is not independent on particles' stopping power, thus
illustrating that the radiation hardness of plastic scintillators can be
strongly weakened under high excitation density in heavy ion environments.Comment: 5 figures, accepted in Nucl. Instrum. Methods
The molecular mechanism of cotranslational membrane protein recognition and targeting by SecA
Cotranslational protein targeting is a conserved process for membrane protein biogenesis. In Escherichia coli, the essential ATPase SecA was found to cotranslationally target a subset of nascent membrane proteins to the SecYEG translocase at the plasma membrane. The molecular mechanism of this pathway remains unclear. Here we use biochemical and cryoelectron microscopy analyses to show that the amino-terminal amphipathic helix of SecA and the ribosomal protein uL23 form a composite binding site for the transmembrane domain (TMD) on the nascent protein. This binding mode further enables recognition of charged residues flanking the nascent TMD and thus explains the specificity of SecA recognition. Finally, we show that membrane-embedded SecYEG promotes handover of the translating ribosome from SecA to the translocase via a concerted mechanism. Our work provides a molecular description of the SecA-mediated cotranslational targeting pathway and demonstrates an unprecedented role of the ribosome in shielding nascent TMDs
Interpolating Coherent States for Heisenberg-Weyl and Single-Photon SU(1,1) Algebras
New quantal states which interpolate between the coherent states of the
Heisenberg_Weyl and SU(1,1) algebras are introduced. The interpolating states
are obtained as the coherent states of a closed and symmetric algebra which
interpolates between the two algebras. The overcompleteness of the
interpolating coherent states is established. Differential operator
representations in suitable spaces of entire functions are given for the
generators of the algebra. A nonsymmetric set of operators to realize the
Heisenberg-Weyl algebra is provided and the relevant coherent states are
studied.Comment: 13 pages nd 5 ps figure
Blue laser cooling transitions in Tm I
We have studied possible candidates for laser cooling transitions in
Tm in the spectral region 410 -- 420 nm. By means of saturation
absorption spectroscopy we have measured the hyperfine structure and rates of
two nearly closed cycling transitions from the ground state
to upper states
at
410.6 nm and
at
420.4 nm and evaluated the life times of the excited levels as 15.9(8) ns and
48(6) ns respectively. Decay rates from these levels to neighboring
opposite-parity levels are evaluated by means of Hartree-Fock calculations. We
conclude, that the strong transition at 410.6 nm has an optical leak rate of
less then and can be used for efficient laser cooling of
Tm from a thermal atomic beam. The hyperfine structure of two other
even-parity levels which can be excited from the ground state at 409.5 nm and
418.9 nm is also measured by the same technique. In addition we give a
calculated value of s for the rate of magnetic-dipole transition
at 1.14 m between the fine structure levels
of the ground state which can be
considered as a candidate for applications in atomic clocks.Comment: 8 pages, 5 figure
On finite -groups whose automorphisms are all central
An automorphism of a group is said to be central if
commutes with every inner automorphism of . We construct a family of
non-special finite -groups having abelian automorphism groups. These groups
provide counter examples to a conjecture of A. Mahalanobis [Israel J. Math.,
{\bf 165} (2008), 161 - 187]. We also construct a family of finite -groups
having non-abelian automorphism groups and all automorphisms central. This
solves a problem of I. Malinowska [Advances in group theory, Aracne Editrice,
Rome 2002, 111-127].Comment: 11 pages, Counter examples to a conjecture from [Israel J. Math.,
{\bf 165} (2008), 161 - 187]; This paper will appear in Israel J. Math. in
201
Cosmic-ray strangelets in the Earth's atmosphere
If strange quark matter is stable in small lumps, we expect to find such
lumps, called ``strangelets'', on Earth due to a steady flux in cosmic rays.
Following recent astrophysical models, we predict the strangelet flux at the
top of the atmosphere, and trace the strangelets' behavior in atmospheric
chemistry and circulation. We show that several strangelet species may have
large abundances in the atmosphere; that they should respond favorably to
laboratory-scale preconcentration techniques; and that they present promising
targets for mass spectroscopy experiments.Comment: 28 pages, 4 figures, revtex
Notes on Stein-Sahi representations and some problems of non harmonic analysis
We discuss one natural class of kernels on pseudo-Riemannian symmetric
spaces.Comment: 40p
- …
