41,975 research outputs found
Non-marginally bound inhomogeneous dust collapse in higher dimensional space-time
We investigate the occurrence and nature of a naked singularity in the
gravitational collapse of an inhomogeneous dust cloud described by a
self-similar higher dimensional Tolman-Bondi space-time. Bound, marginally
bound and unbound space-times are analyzed. The degree of inhomogeneity of the
collapsing matter necessary to form a naked singularity is given.Comment: 5 pages, RevTeX 4, no figures, 2 tables, Accepted in IJMP
Development of an integrated BEM approach for hot fluid structure interaction
The progress made toward the development of a boundary element formulation for the study of hot fluid-structure interaction in Earth-to-Orbit engine hot section components is reported. The convective viscous integral formulation was derived and implemented in the general purpose computer program GP-BEST. The new convective kernel functions, in turn, necessitated the development of refined integration techniques. As a result, however, since the physics of the problem is embedded in these kernels, boundary element solutions can now be obtained at very high Reynolds number. Flow around obstacles can be solved approximately with an efficient linearized boundary-only analysis or, more exactly, by including all of the nonlinearities present in the neighborhood of the obstacle. The other major accomplishment was the development of a comprehensive fluid-structure interaction capability within GP-BEST. This new facility is implemented in a completely general manner, so that quite arbitrary geometry, material properties and boundary conditions may be specified. Thus, a single analysis code (GP-BEST) can be used to run structures-only problems, fluids-only problems, or the combined fluid-structure problem. In all three cases, steady or transient conditions can be selected, with or without thermal effects. Nonlinear analyses can be solved via direct iteration or by employing a modified Newton-Raphson approach
Development of an integrated BEM for hot fluid-structure interaction
One of the most difficult problems in engine structural component durability analysis is the determination of the temperatures and fluxes in the structural components directly in contact with the hot gas flow path. Currently there exists no rational analytical or numerical technique which can effectively deal with this problem. Since the temperature distribution in the structural components are strongly influenced by both the fluid flow and the deformation as well as the cooling system in the structure, the only effective way to deal with this problem is to develop an integrated solid mechanics, fluid mechanics and heat transfer analysis for this problem. Herein, the Boundary Element Method (BEM) is chosen as the basic analysis tool principally because the definition of quantities like fluxes, temperatures, displacements, and velocities are very precise on a boundary based discretization scheme. One fundamental difficulty is that a BEM analysis requires a considerable amount of analytical work which is not present in other numerical methods. During the past year, all of this analytical work was completed and a two dimensional, general purpose code was written. A portion of the work is summarized
Development of an integrated BEM (Boundary Element Mesh) for hot fluid-structure interaction
A boundary integral representation for a coupled approach to fluid flow and solid deformation problems associated with the design of hot-section components such as those in the Space Shuttle Main Engine is discussed. The formulation is based on the fundamental analytical solution of the Navier-Stokes equation for fluid velocity in an infinite domain. This fundamental solution was obtained by decomposing a Navier-Stokes equation into vorticity and dilation transport equations. A boundary integral involving convolutions in time was then constructed in which the convective terms appear in the volume integral
Thermal Behaviour of Euclidean Stars
A recent study of dissipative collapse considered a contracting sphere in
which the areal and proper radii are equal throughout its evolution. The
interior spacetime was matched to the exterior Vaidya spacetime which generated
a temporal evolution equation at the boundary of the collapsing sphere. We
present a solution of the boundary condition which allows the study of the
gravitational and thermodynamical behaviour of this particular radiating model.Comment: 10 pages, 3 figure
Spin injection and perpendicular spin transport in graphite nanostructures
Organic and carbon-based materials are attractive for spintronics because
their small spin-orbit coupling and low hyperfine interaction is expected to
give rise to large spin-relaxation times. However, the corresponding
spin-relaxation length is not necessarily large when transport is via weakly
interacting molecular orbitals. Here we use graphite as a model system and
study spin transport in the direction perpendicular to the weakly bonded
graphene sheets. We achieve injection of highly (75%) spin-polarized electrons
into graphite nanostructures of 300-500 nm across and up to 17 nm thick, and
observe transport without any measurable loss of spin information. Direct
visualization of local spin transport in graphite-based spin-valve sandwiches
also shows spatially uniform and near-unity transmission for electrons at 1.8
eV above the Fermi level
Edge Saturation effects on the magnetism and band gaps in multilayer graphene ribbons and flakes
Using a density functional theory based electronic structure method and
semi-local density approximation, we study the interplay of geometric
confinement, magnetism and external electric fields on the electronic structure
and the resulting band gaps of multilayer graphene ribbons whose edges are
saturated with molecular hydrogen (H) or hydroxyl (OH) groups. We discuss
the similarities and differences of computed features in comparison with the
atomic hydrogen (or H-) saturated ribbons and flakes. For H
edge-saturation, we find \emph{shifted} labeling of three armchair ribbon
classes and magnetic to non-magnetic transition in narrow zigzag ribbons whose
critical width changes with the number of layers. Other computed
characteristics, such as the existence of a critical gap and external electric
field behavior, layer dependent electronic structure, stacking-dependent band
gap induction and the length confinement effects remain qualitatively same with
those of H-saturated ribbons.Comment: 9 pages, 10 figures, submitte
On Symmetry Non-Restoration at High Temperature
We study the effect of next-to-leading order contributions on the phenomenon
of symmetry non-restoration at high temperature in an
model.Comment: 8 pages. Two figures in a separate fil
- …
