972 research outputs found

    Size dependent tunneling and optical spectroscopy of CdSe quantum rods

    Full text link
    Photoluminescence excitation spectroscopy and scanning tunneling spectroscopy are used to study the electronic states in CdSe quantum rods that manifest a transition from a zero dimensional to a one dimensional quantum confined structure. Both optical and tunneling spectra show that the level structure depends primarily on the rod diameter and not on length. With increasing diameter, the band-gap and the excited state level spacings shift to the red. The level structure was assigned using a multi-band effective-mass model, showing a similar dependence on rod dimensions.Comment: Accepted to PRL (nearly final version). 4 pages in revtex, 4 figure

    Higher order contributions to the effective action of N=2 super Yang-Mills

    Full text link
    We apply heat kernel techniques in N=1 superspace to compute the one-loop effective action to order F5F^5 for chiral superfields coupled to a non-Abelian super Yang-Mills background. The results, when combined with those of hep-th/0210146, yield the one-loop effective action to order F5F^5 for any N=2 super Yang-Mills theory coupled to matter hypermultiplets.Comment: 23 pages, references adde

    The Effect of Cone Opsin Mutations on Retinal Structure and the Integrity of the Photoreceptor Mosaic

    Get PDF
    Purpose. To evaluate retinal structure and photoreceptor mosaic integrity in subjects with OPN1LW and OPN1MW mutations. Methods. Eleven subjects were recruited, eight of whom have been previously described. Cone and rod density was measured using images of the photoreceptor mosaic obtained from an adaptive optics scanning light ophthalmoscope (AOSLO). Total retinal thickness, inner retinal thickness, and outer nuclear layer plus Henle fiber layer (ONL+HFL) thickness were measured using cross-sectional spectral-domain optical coherence tomography (SD-OCT) images. Molecular genetic analyses were performed to characterize the OPN1LW/OPN1MW gene array. Results. While disruptions in retinal lamination and cone mosaic structure were observed in all subjects, genotype-specific differences were also observed. For example, subjects with “L/M interchange” mutations resulting from intermixing of ancestral OPN1LW and OPN1MW genes had significant residual cone structure in the parafovea (∼25% of normal), despite widespread retinal disruption that included a large foveal lesion and thinning of the parafoveal inner retina. These subjects also reported a later-onset, progressive loss of visual function. In contrast, subjects with the C203R missense mutation presented with congenital blue cone monochromacy, with retinal lamination defects being restricted to the ONL+HFL and the degree of residual cone structure (8% of normal) being consistent with that expected for the S-cone submosaic. Conclusions. The photoreceptor phenotype associated with OPN1LW and OPN1MW mutations is highly variable. These findings have implications for the potential restoration of visual function in subjects with opsin mutations. Our study highlights the importance of high-resolution phenotyping to characterize cellular structure in inherited retinal disease; such information will be critical for selecting patients most likely to respond to therapeutic intervention and for establishing a baseline for evaluating treatment efficacy

    Non(anti)commutative SYM theory: Renormalization in superspace

    Full text link
    We present a systematic investigation of one-loop renormalizability for nonanticommutative N=1/2, U(N) SYM theory in superspace. We first discuss classical gauge invariance of the pure gauge theory and show that in contradistinction to the ordinary anticommutative case, different representations of supercovariant derivatives and field strengths do not lead to equivalent descriptions of the theory. Subsequently we develop background field methods which allow us to compute a manifestly covariant gauge effective action. One-loop evaluation of divergent contributions reveals that the theory simply obtained from the ordinary one by trading products for star products is not renormalizable. In the case of SYM with no matter we present a N=1/2 improved action which we show to be one-loop renormalizable and which is perfectly compatible with the algebraic structure of the star product. For this action we compute the beta functions. A brief discussion on the inclusion of chiral matter is also presented.Comment: Latex file, 59 pages, 10 figures, One reference adde

    Height-diameter allometry of tropical forest trees

    Get PDF
    Tropical tree height-diameter (H:D) relationships may vary by forest type and region making large-scale estimates of above-ground biomass subject to bias if they ignore these differences in stem allometry. We have therefore developed a new global tropical forest database consisting of 39 955 concurrent H and D measurements encompassing 283 sites in 22 tropical countries. Utilising this database, our objectives were: 1. to determine if H:D relationships differ by geographic region and forest type (wet to dry forests, including zones of tension where forest and savanna overlap). 2. to ascertain if the H:D relationship is modulated by climate and/or forest structural characteristics (e.g. stand-level basal area, A). 3. to develop H:D allometric equations and evaluate biases to reduce error in future local-to-global estimates of tropical forest biomass. Annual precipitation coefficient of variation (PV), dry season length (SD), and mean annual air temperature (TA) emerged as key drivers of variation in H:D relationships at the pantropical and region scales. Vegetation structure also played a role with trees in forests of a high A being, on average, taller at any given D. After the effects of environment and forest structure are taken into account, two main regional groups can be identified. Forests in Asia, Africa and the Guyana Shield all have, on average, similar H:D relationships, but with trees in the forests of much of the Amazon Basin and tropical Australia typically being shorter at any given D than their counterparts elsewhere. The region-environment-structure model with the lowest Akaike\u27s information criterion and lowest deviation estimated stand-level H across all plots to within amedian −2.7 to 0.9% of the true value. Some of the plot-to-plot variability in H:D relationships not accounted for by this model could be attributed to variations in soil physical conditions. Other things being equal, trees tend to be more slender in the absence of soil physical constraints, especially at smaller D. Pantropical and continental-level models provided less robust estimates of H, especially when the roles of climate and stand structure in modulating H:D allometry were not simultaneously taken into account

    Spin-based all-optical quantum computation with quantum dots: understanding and suppressing decoherence

    Full text link
    We present an all-optical implementation of quantum computation using semiconductor quantum dots. Quantum memory is represented by the spin of an excess electron stored in each dot. Two-qubit gates are realized by switching on trion-trion interactions between different dots. State selectivity is achieved via conditional laser excitation exploiting Pauli exclusion principle. Read-out is performed via a quantum-jump technique. We analyze the effect on our scheme's performance of the main imperfections present in real quantum dots: exciton decay, hole mixing and phonon decoherence. We introduce an adiabatic gate procedure that allows one to circumvent these effects, and evaluate quantitatively its fidelity

    Optimizing the photoassociation of cold atoms by use of chirped laser pulses

    Full text link
    Photoassociation of ultracold atoms induced by chirped picosecond pulses is analyzed in a non-perturbative treatment by following the wavepackets dynamics on the ground and excited surfaces. The initial state is described by a Boltzmann distribution of continuum scattering states. The chosen example is photoassociation of cesium atoms at temperature T=54 μK\mu K from the a3Σu+(6s,6s)a^3 \Sigma_u^+(6s,6s) continuum to bound levels in the external well of the 0g(6s+6p3/2)0_g^-(6s+6p_{3/2}) potential. We study how the modification of the pulse characteristics (carrier frequency, duration, linear chirp rate and intensity) can enhance the number of photoassociated molecules and suggest ways of optimizing the production of stable molecules.Comment: 40 pages, 12 figures, submitted to Eur. Phys. J.

    Non(anti)commutative N=(1,1/2) Supersymmetric U(1) Gauge Theory

    Full text link
    We study a reduction of deformation parameters in non(anti)commutative N=2 harmonic superspace to those in non(anti)commutative N=1 superspace. By this reduction we obtain the exact gauge and supersymmetry transformations in the Wess-Zumino gauge of non(anti)commutative N=2 supersymmetric U(1) gauge theory defined in the deformed harmonic superspace. We also find that the action with the first order correction in the deformation parameter reduces to the one in the N=1 superspace by some field redefinition. We construct deformed N=(1,1/2) supersymmetry in N=2 supersymmetric U(1) gauge theory in non(anti)commutative N=1 superspace.Comment: 30 pages, LaTeX, V2: a reference adde

    Electron and hole states in quantum-dot quantum wells within a spherical 8-band model

    Get PDF
    In order to study heterostructures composed both of materials with strongly different parameters and of materials with narrow band gaps, we have developed an approach, which combines the spherical 8-band effective-mass Hamiltonian and the Burt's envelope function representation. Using this method, electron and hole states are calculated in CdS/HgS/CdS/H_2O and CdTe/HgTe/CdTe/H_2O quantum-dot quantum-well heterostructures. Radial components of the wave functions of the lowest S and P electron and hole states in typical quantum-dot quantum wells (QDQWs) are presented as a function of radius. The 6-band-hole components of the radial wave functions of an electron in the 8-band model have amplitudes comparable with the amplitude of the corresponding 2-band-electron component. This is a consequence of the coupling between the conduction and valence bands, which gives a strong nonparabolicity of the conduction band. At the same time, the 2-band-electron component of the radial wave functions of a hole in the 8-band model is small compared with the amplitudes of the corresponding 6-band-hole components. It is shown that in the CdS/HgS/CdS/H_2O QDQW holes in the lowest states are strongly localized in the well region (HgS). On the contrary, electrons in this QDQW and both electron and holes in the CdTe/HgTe/CdTe/H_2O QDQW are distributed through the entire dot. The importance of the developed theory for QDQWs is proven by the fact that in contrast to our rigorous 8-band model, there appear spurious states within the commonly used symmetrized 8-band model.Comment: 15 pages, 5 figures, E-mail addresses: [email protected], [email protected]
    corecore