71 research outputs found

    Large eddy simulation of evaporating two-phase flows

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Large eddy simulation of evaporating two-phase flows

    No full text
    The objective of this study is to develop a CFD tool for performing reliable large eddy simulation (LES) of the compressible evaporating two-phase turbulent flow in a gas turbine combustor. The KIVA-3V code originally developed by Los Alamos National Laboratory is used as a baseline code. The KIVA-3V code has been modified to facilitate LES calculations. Both the temporal and spatial accuracies of the original KIVA-3V code have been improved to second order. A one-equation subgrid scale (SGS) turbulence model is implemented to describe the unresolved turbulent subgrid effect. To ensure that there are sufficient particle numbers to capture the dynamic droplet dispersion process, the ETAB breakup model coupled with a new hybrid droplet-particle algorithm is also implemented into the code. Furthermore, the effect of the subgrid scale (SGS) velocity on the droplet dispersion is included. The SGS velocity is computed from the subgrid turbulent kinetic energy predicted by the one-equation SGS turbulence model. A new collision model based on the concept of "particle cloud" is proposed and implemented in the code. The new model greatly reduces the grid-dependence of the original O'Rourke model in a Cartesian mesh. The gas solver of the new LES version of KIVA-3V code, which will be referred as KIVA-LES hereby) is validated against large eddy simulations of natural and forced plane impinging jets. Predictions were carried out for different inflow conditions, which include a natural plane impinging jet with a random perturbation on the inflow plane and a forced plane impinging jet with a Strouhal number of 0.36, locked both in phase and laterally in space. The first simulation was performed to quantitatively study the mean flow and turbulence statistics. The computed field variables and turbulence intensity of streamwise velocity agreed well with the experimental results. The second simulation was performed to study the vortex structures of a forced plane impinging jet. The predictions captured the typical vortex structures of this kind of flow, such as spanwise rollers, successive ribs, cross ribs and wall ribs were reproduced by the simulation, which were also previously detected by the experiment of Sakakibara et al. (103) with digital particle image velocimetry (DPIV) system, but to our -best knowledge never wholly reproduced by numerical simulations to date. Moreover, the study has also led to some new findings related to the formation and evolution of successive ribs, cross ribs and wall ribs. The new collision model is tested against analytical solutions of simplified realistic collision problems in a box volume. The grid-dependence of the model is also checked against some spray test cases. The new collision scheme is computationally more efficient than the frequently used O'Rourke's (87) scheme since it abandons a sampling procedure to compute the collision number. The new model delivers sufficient accuracy in calculating the collision numbers in cases with uniformly distributed droplets although O'Rourke's model seems to perform better for these scenarios. However, for the prediction of a real spray in Cartesian gird, the new model has delivered much improved results. The predictions of the new model do not show any grid-dependent artefacts. KIVA-LES with the Lagrangian spray models is used to predict non-evaporating and evaporating diesel fuel sprays. The computed results are compared with the experimental data by Hiroyasu and Kadota (55) and Naber and Siebers (81), as well as the predictions of the original KIVA-3V. The predictions are in good agreement with the data. The large scale vortical structures are reproduced by the LES simulations, which cause "branch-like" spray shape and influence the spray penetration depth. The predictions have also captured the differences between the dense and dilute regions of the sprays. The LES analysis of diesel sprays has also demonstrated that SGS velocity has significant influence on the predicted spray angles. Most importantly, grid-convergent results, which were difficult to obtain with the original KIVA-3V, have been obtained in the present study. Finally, the validated code is used to study evaporating two-phase spray flow in a coaxial gas turbine model combustor. The predictions were compared with some published experimental data. This is a first step towards a more comprehensive numerical analysis of practical industrial combustors where multiple inlets and more complex combustor geometry are encountered. Good agreement with the data is achieved. The predictions have captured the "ring-like" vortex just downstream the annulus and "worm-like" streamwise vortical structure further downstream. The axial droplet mass flux and Sauter mean radius (SMR) are well predicted. Overall the present study has demonstrated the capability of KIVA-LES with the newly developed collision model to provide reasonably accurate predictions of evaporating two-phase flows in coaxial gas turbine combustors

    Visual System for Tracking Specific Human Body Extraction of 3D Skeletal Points Based on Monocular

    No full text
    AbstractIn this paper, we introduce the Extracting specific human 3D skeleton point system based on monocular tracking. The system mainly consists of two parts. The first part is the detection and tracking of specific human body. This article uses simple online and real time tracking with a deep association metric (DEEP SORT)[1] algorithm, which is simple but effective, and meets system requirements in terms of efficiency and real-time. The second part is to extract the 3D bone points for the specific target of the tracking. We refer to Xingyi Zhou’s research work[2] in this area. Utilizing the correlation between 2D pose and depth estimation subtasks, the training is end-to-end, and the algorithm introduces 3D geometric constraints to normalize 3D pose prediction, which is effective without ground truth value depth labels. In this paper, the two methods are combined by improvement, and the Extracting specific human 3D bone point system based on monocular tracking is designed. It can realize the tracking of 3D skeletal points of specific targets. The system has high practical value in human-computer interaction, virtual reality and motion recognition.</jats:p

    The effect of convective motion within liquid fuel on the mass burning rates of pool fires – a numerical study

    Get PDF
    To improve numerical simulation of liquid pool fires and remove the need for experimentally measured or empirically calculated mass burning rates as boundary conditions, a fully coupled three-dimensional (3-D) numerical formulation, which directly solves convective motion in the fuel region by incorporating inhomogeneous heat feedback, is formulated. The fire dynamics is modelled using the large eddy simulation (LES) approach. Incompressible laminar flow formation is applied to the liquid fuel region, assuming constant thermo-physical properties except for the density which follows the Boussinesq approximation. The numerical formulation of the two phases is solved using a fully coupled conjugate heat transfer approach at the pool surface. The coupled model is validated against published measurements for a thin-layer heptane pool fire and a deep methanol pool fire. The convective motion within the liquid phase is found to have important effects on the pool fire mass burning rate and its neglection would result in a fast rise and over-prediction of the mass burning rate

    Computational analysis of the mechanisms and characteristics for pulsating and uniform flame spread over liquid fuel at subflash temperatures

    No full text
    The present study aims to gain insight of the mechanisms and characteristics for pulsating and uniform flame spread over liquid fuel at subflash temperatures. A specific goal is to use the validated three-dimensional (3-D) numerical model to reveal fine details of the gas and liquid phase flows as well as the resulting flame characteristics, which are challenging to obtain experimentally. To facilitate the study, 3-D formulations have been developed to explicitly solve the transport equations in both phases. A compressible solver was formulated for flame propagation in the gas phase using a one-step chemical reaction expression and mixture-averaged diffusion coefficients for the gaseous species. An incompressible solver with temperature dependent thermo-physical properties was employed to describe the convective motions and heat transfer in the liquid fuel region. Validation has been conducted for both uniform and pulsating spreads over a narrow 1-propanol tray with varying fuel depths through comparing the predicted flame front evolution with published measurements. Further qualitative comparison has also been conducted for some predicted fine features of the gas and liquid phase flows and flame spreading characteristics with published experimental observations. For both the uniform and pulsating spread, the detailed flame structure including the main diffusion flame and a small stratified premixed flame at the front have been captured. Wherever relevant, the detailed predictions were also used to shed light on some discrepancies in previously reported features in different laboratory studies and numerical simulations. Finally, the detailed 3-D predictions were used to illustrate fine features of the subsurface convective flow and its relative position to the flame front, the relative magnitudes of the subsurface flow velocity and that of the spread rate as well as the role of the thermocapillary-driven subsurface flow in the flame spread mechanism

    Large Eddy Simulation of a Realistic Gas Turbine Combustor

    Full text link
    This paper proposes a large eddy simulation approach for the modeling of combusting flow with spray in realistic gas turbine combustors. A one equation subgrid model is used to model the effect of the unresolved subgrid scales on the resolved large scales. Subgrid combustion is modeled by an extended eddy dissipation model in which the filtered reaction rate is controlled by the turbulent mixing rate between the fine structures and the surrounding fluids. An Eulerian-Lagrangian approach is used to model the two-phase spray flow, and spray particles are tracked by a two-way coupling Lagrangian approach. Then the proposed approach is applied to simulate a combusting spray flow in an industrial annular combustor. The objectives of this study are to demonstrate its capability to investigate the complex flow and combustion dynamics in realistic gas turbine combustors. The predicted instantaneous and time averaged fields of velocity, temperature, pressure, fuel mass fraction are investigated. The precessing vortex core caused by the swirling flow as well as pressure oscillations is examined. The predicted results nicely reproduce the flow, spray and combustion dynamics and successfully capture the main features of the studied combustor, such as the processing vortex core. Finally, the predicted exit temperature and the total pressure loss are compared with experimental data and good agreements are obtained.</jats:p

    An efficient approach to achieve flame acceleration and transition to detonation

    No full text
    This paper presents a novel method to accelerate flame propagation and transition to detonation in a coiled channel. The objective is to bring to light the basic understanding of the phenomenon and to show its potential in the fields of highly efficient combustion or propulsion. It was found that the flame evolution in the coiled channel is significantly different from that in a straight channel. In the flame acceleration stage, the flame propagation velocity increases exponentially in the coiled channel while it increases linearly in the straight channel, primarily due to the existence of a strong velocity gradient in the transverse direction in the coiled channel. Deflagration to detonation transition (DDT) was only observed in the coiled channel under current settings, being triggered by a series of local explosions at the boundary layer. In general, the coiled channel can greatly accelerate the flame and shorten the distance of the DDT compared with the straight channel
    corecore