13 research outputs found

    Chinese Internet AS-level Topology

    Full text link
    We present the first complete measurement of the Chinese Internet topology at the autonomous systems (AS) level based on traceroute data probed from servers of major ISPs in mainland China. We show that both the Chinese Internet AS graph and the global Internet AS graph can be accurately reproduced by the Positive-Feedback Preference (PFP) model with the same parameters. This result suggests that the Chinese Internet preserves well the topological characteristics of the global Internet. This is the first demonstration of the Internet's topological fractality, or self-similarity, performed at the level of topology evolution modeling.Comment: This paper is a preprint of a paper submitted to IEE Proceedings on Communications and is subject to Institution of Engineering and Technology Copyright. If accepted, the copy of record will be available at IET Digital Librar

    Scale-Free and Hierarchical Structures in Complex Networks

    Full text link

    Publisher Correction: Network-based prediction of drug combinations

    No full text
    The original version of this Article contained an error in Acknowledgements, which incorrectly omitted the following: ‘This work was also supported by NHLBI grant P01HL132825 to A.-L.B.’ This has been corrected in both the PDF and HTML versions of the Article.</jats:p

    Publisher Correction: Network-based prediction of drug combinations

    No full text
    The original version of this Article contained an error in Acknowledgements, which incorrectly omitted the following: ‘This work was also supported by NHLBI grant P01HL132825 to A.-L.B.’ This has been corrected in both the PDF and HTML versions of the Article

    Network-based prediction of drug combinations

    No full text
    AbstractDrug combinations, offering increased therapeutic efficacy and reduced toxicity, play an important role in treating multiple complex diseases. Yet, our ability to identify and validate effective combinations is limited by a combinatorial explosion, driven by both the large number of drug pairs as well as dosage combinations. Here we propose a network-based methodology to identify clinically efficacious drug combinations for specific diseases. By quantifying the network-based relationship between drug targets and disease proteins in the human protein–protein interactome, we show the existence of six distinct classes of drug–drug–disease combinations. Relying on approved drug combinations for hypertension and cancer, we find that only one of the six classes correlates with therapeutic effects: if the targets of the drugs both hit disease module, but target separate neighborhoods. This finding allows us to identify and validate antihypertensive combinations, offering a generic, powerful network methodology to identify efficacious combination therapies in drug development.</jats:p

    Topology visualisation tool for large-scale communications networks

    No full text

    Human-AI coevolution

    No full text
    Human-AI coevolution, defined as a process in which humans and AI algorithms continuously influence each other, increasingly characterises our society, but is understudied in artificial intelligence and complexity science literature. Recommender systems and assistants play a prominent role in human-AI coevolution, as they permeate many facets of daily life and influence human choices through online platforms. The interaction between users and AI results in a potentially endless feedback loop, wherein users' choices generate data to train AI models, which, in turn, shape subsequent user preferences. This human-AI feedback loop has peculiar characteristics compared to traditional human-machine interaction and gives rise to complex and often “unintended” systemic outcomes. This paper introduces human-AI coevolution as the cornerstone for a new field of study at the intersection between AI and complexity science focused on the theoretical, empirical, and mathematical investigation of the human-AI feedback loop. In doing so, we: (i) outline the pros and cons of existing methodologies and highlight shortcomings and potential ways for capturing feedback loop mechanisms; (ii) propose a reflection at the intersection between complexity science, AI and society; (iii) provide real-world examples for different human-AI ecosystems; and (iv) illustrate challenges to the creation of such a field of study, conceptualising them at increasing levels of abstraction, i.e., scientific, legal and socio-political
    corecore