10 research outputs found
Additive feeding inhibitory and aversive effects of naltrexone and exendin-4 combinations
Sleeve Gastrectomy Reduces Body Weight and Improves Metabolic Profile also in Obesity-Prone Rats
Eating in mice with gastric bypass surgery causes exaggerated activation of brainstem anorexia circuit
Incretin hormones and the satiation signal
Recent research has indicated that appetite-regulating hormones from the gut may have therapeutic potential. The incretin hormone, glucagon-like peptide-1 (GLP-1), appears to be involved in both peripheral and central pathways mediating satiation. Several studies have also indicated that GLP-1 levels and responses to meals may be altered in obese subjects. Clinical trial results have shown further that two GLP-1 receptor agonists (GLP-1 RAs), exenatide and liraglutide, which are approved for the treatment of hyperglycemia in patients with type 2 diabetes, also produce weight loss in overweight subjects without diabetes. Thus, GLP-1 RAs may provide a new option for pharmacological treatment of obesity
From sensory circumventricular organs to cerebral cortex: Neural pathways controlling thirst and hunger
Much progress has been made during the past 30 years with respect to elucidating the neural and endocrine pathways by which bodily needs for water and energy are brought to conscious awareness through the generation of thirst and hunger. One way that circulating hormones influence thirst and hunger is by acting on neurones within sensory circumventricular organs (CVOs). This is possible because the subfornical organ and organum vasculosum of the lamina terminalis (OVLT), the sensory CVOs in the forebrain, and the area postrema in the hindbrain lack a normal blood-brain barrier such that neurones within them are exposed to blood-borne agents. The neural signals generated by hormonal action in these sensory CVOs are relayed to several sites in the cerebral cortex to stimulate or inhibit thirst or hunger. The subfornical organ and OVLT respond to circulating angiotensin II, relaxin and hypertonicity to drive thirst-related neural pathways, whereas circulating amylin, leptin and possibly glucagon-like peptide-1 act at the area postrema to influence neural pathways inhibiting food intake. As a result of investigations using functional brain imaging techniques, the insula and anterior cingulate cortex, as well as several other cortical sites, have been implicated in the conscious perception of thirst and hunger in humans. Viral tracing techniques show that the anterior cingulate cortex and insula receive neural inputs from thirst-related neurones in the subfornical organ and OVLT, with hunger-related neurones in the area postrema having polysynaptic efferent connections to these cortical regions. For thirst, initially, the median preoptic nucleus and, subsequently, the thalamic paraventricular nucleus and lateral hypothalamus have been identified as likely sites of synaptic links in pathways from the subfornical organ and OVLT to the cortex. The challenge remains to identify the links in the neural pathways that relay signals originating in sensory CVOs to cortical sites subserving either thirst or hunger
