1,819 research outputs found

    Inertial Oscillations of Pinned Dislocations

    Full text link
    Dislocation pinning plays a vital role in the plastic behaviour of a crystalline solid. Here we report the first observation of the damped oscillations of a mobile dislocation after it gets pinned at an obstacle in the presence of a constant static shear load. These oscillations are found to be inertial, instead of forced as obtained in the studies of internal friction of solid. The rate of damping enables us to determine the effective mass of the dislocation. Nevertheless, the observed relation between the oscillation frequency and the link length is found to be anomalous, when compared with the theoretical results in the framework of Koehler's vibrating string model. We assign this anomaly to the improper boundary conditions employed in the treatment. Finally, we propose that the inertial oscillations may offer a plausible explanation of the electromagnetic emissions during material deformation and seismic activities.Comment: 28 pages, 4 figure

    Comparison between S. T. radar and in situ balloon measurements

    Get PDF
    A campaign for simultaneous in situ and remote observation of both troposphere and stratosphere took place near Aire-sur-l'Adour (in southeastern France) on May 4, 1984. The aim of this campaign was a better understanding of the physics of radar echoes. The backscattered signal obtained with a stratosphere-troposphere radar both at the vertical and 15 deg. off vertical is compared with the velocity and temperature measurements made in the same region (about 10 km north of the radar site) by balloon-borne ionic anenometers and temperature sensors. In situ measurements clearly indicate that the temperature fluctuations are not always consistent with the standard turbulent theory. Nevertheless, the assumptions generally made (isotropy and turbulent field in k) and the classical formulation so derived for radar reflectivity are able to reproduce the shape of the radar return power profiles in oblique directions. Another significant result is the confirmation of the role played by the atmospheric stratification in the vertical echo power. It is important to develop these simultaneous in situ and remote experiments for a better description of the dynamical and thermal structure of the atmosphere and for a better understanding of the mechanisms governing clear-air radar reflectivity

    Universal Scaling Property of System Approaching Equilibrium

    Full text link
    In this Letter we show that the diffusion kinetics of kinetic energy among the atoms in non- equilibrium crystalline systems follows universal scaling relation and obey Levy-walk properties. This scaling relation is found to be valid for systems no matter how far they are driven out of equilibrium.Comment: 6 pages, 4 figure

    Persistent time intervals between features in solar flare hard X-ray emission

    Get PDF
    Several solar hard X-ray events (greater than 100 keV) were observed simultaneously with identical instruments on the Venera 11, 12, 13, 14, and Prognoz spacecraft. High time resolution (= 2 ms) data were stored in memory when a trigger occurred. The observations of modulation are presented with a period of 1.6 s for the event on December 3, 1978. Evidence is also presented for fast time fluctuations from an event on November 6, 1979, observed from Venera 12 and another on September 6, 1981, observed from the Solar Maximum Mission. Power spectrum analysis, epoch folding, and Monte Carlo simulation were used to evaluate the statistical significance of persistent time delays between features. The results are discussed in light of the MHD model proposed by Zaitsev and Stepanov

    Design of metallic nanoparticles gratings for filtering properties in the visible spectrum

    Full text link
    Plasmonic resonances in metallic nanoparticles are exploited to create efficient optical filtering functions. A Finite Element Method is used to model metallic nanoparticles gratings. The accuracy of this method is shown by comparing numerical results with measurements on a two-dimensional grating of gold nanocylinders with elliptic cross section. Then a parametric analysis is performed in order to design efficient filters with polarization dependent properties together with high transparency over the visible range. The behavior of nanoparticle gratings is also modelled using the Maxwell-Garnett homogenization theory and analyzed by comparison with the diffraction by a single nanoparticle. The proposed structures are intended to be included in optical systems which could find innovative applications.Comment: submitted to Applied Optic

    Phase transitions and noise crosscorrelations in a model of directed polymers in a disordered medium

    Full text link
    We show that effective interactions mediated by disorder between two directed polymers can be modelled as the crosscorrelation of noises in the Kardar-Parisi-Zhang (KPZ) equations satisfied by the respective free energies of these polymers. When there are two polymers, disorder introduces attractive interactions between them. We analyze the phase diagram in details and show that these interactions lead to new phases in the phase diagram. We show that, even in dimension d=1d=1, the two directed polymers see the attraction only if the strength of the disorder potential exceeds a threshold value. We extend our calculations to show that if there are mm polymers in the system then mm-body interactions are generated in the disorder averaged effective free energy.Comment: To appear in Phys. Rev. E(2000

    Polymers with Randomness: Phases and Phase Transitions

    Get PDF
    We discuss various aspects of the randomly interacting directed polymers with emphasis on the phases and phase transition. We also discuss the behaviour of overlaps of directed paths in a random medium.Comment: Invited talk at StatPhys, Calcutta 1995, to appear in Physica A; REVTEX, 2 figures on request (email: [email protected]

    Crustal Oscillations of Slowly Rotating Relativistic Stars

    Full text link
    We study low-amplitude crustal oscillations of slowly rotating relativistic stars consisting of a central fluid core and an outer thin solid crust. We estimate the effect of rotation on the torsional toroidal modes and on the interfacial and shear spheroidal modes. The results compared against the Newtonian ones for wide range of neutron star models and equations of state.Comment: 15 page
    corecore