44 research outputs found

    Aquaporin 5 Expression in Mouse Mammary Gland Cells Is Not Driven by Promoter Methylation

    Get PDF
    Several studies have revealed that aquaporins play a role in tumor progression and invasion. In breast carcinomas, high levels of aquaporin 5 (AQP5), a membrane protein involved in water transport, have been linked to increased cell proliferation and migration, thus facilitating tumor progression. Despite the potential role of AQP5 in mammary oncogenesis, the mechanisms controlling mammary AQP5 expression are poorly understood. In other tissues, AQP5 expression has been correlated with its promoter methylation, yet, very little is known about AQP5 promoter methylation in the mammary gland. In this work, we used the mouse mammary gland cell line EpH4, in which we controlled AQP5 expression via the steroid hormone dexamethasone (Dex) to further investigate mechanisms regulating AQP5 expression. In this system, we observed a rapid drop of AQP5 mRNA levels with a delay of several hours in AQP5 protein, suggesting transcriptional control of AQP5 levels. Yet, AQP5 expression was independent of its promoter methylation, or to the presence of negative glucocorticoid receptor elements (nGREs) in its imminent promoter region, but was rather influenced by the cell proliferative state or cell density. We conclude that AQP5 promoter methylation is not a universal mechanism for AQP5 regulation and varies on cell and tissue type

    Streamlined analysis of duplex sequencing data with Du Novo

    Get PDF
    Duplex sequencing was originally developed to detect rare nucleotide polymorphisms normally obscured by the noise of high-throughput sequencing. Here we describe a new, streamlined, reference-free approach for the analysis of duplex sequencing data. We show the approach performs well on simulated data and precisely reproduces previously published results and apply it to a newly produced dataset, enabling us to type low-frequency variants in human mitochondrial DNA. Finally, we provide all necessary tools as stand-alone components as well as integrate them into the Galaxy platform. All analyses performed in this manuscript can be repeated exactly as described at http://usegalaxy.org/duplex. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-016-1039-4) contains supplementary material, which is available to authorized users

    Evaluating the Evidence for Transmission Distortion in Human Pedigrees

    Get PDF
    Children of a heterozygous parent are expected to carry either allele with equal probability. Exceptions can occur, however, due to meiotic drive, competition among gametes, or viability selection, which we collectively term “transmission distortion” (TD). Although there are several well-characterized examples of these phenomena, their existence in humans remains unknown. We therefore performed a genome-wide scan for TD by applying the transmission disequilibrium test (TDT) genome-wide to three large sets of human pedigrees of European descent: the Framingham Heart Study (FHS), a founder population of European origin (HUTT), and a subset of the Autism Genetic Resource Exchange (AGRE). Genotyping error is an important confounder in this type of analysis. In FHS and HUTT, despite extensive quality control, we did not find sufficient evidence to exclude genotyping error in the strongest signals. In AGRE, however, many signals extended across multiple SNPs, a pattern highly unlikely to arise from genotyping error. We identified several candidate regions in this data set, notably a locus in 10q26.13 displaying a genome-wide significant TDT in combined female and male transmissions and a signature of recent positive selection, as well as a paternal TD signal in 6p21.1, the same region in which a significant TD signal was previously observed in 30 European males. Neither region replicated in FHS, however, and the paternal signal was not visible in sperm competition assays or as allelic imbalance in sperm. In maternal transmissions, we detected no strong signals near centromeres or telomeres, the regions predicted to be most susceptible to female-specific meiotic drive, but we found a significant enrichment of top signals among genes involved in cell junctions. These results illustrate both the potential benefits and the challenges of using the TDT to study transmission distortion and provide candidates for investigation in future studies

    Immune Response Associated Gene Signatures in Aortic Dissection Compared to Aortic Aneurysm

    No full text
    Background: Thoracic aortic dissections (TAD) are life-threatening events mostly requiring immediate surgical treatment. Although dissections mainly occur independently of thoracic aortic aneurysms (TAA), both share a high comorbidity. There are several indications for an involvement of the immune system in the development of TAD, just as in TAA. Nevertheless, specific disease-relevant genes, biomolecular processes, and immune-specific phenotypes remain unknown. Methods: RNA from isolated aortic smooth muscle cells from TAD (n = 4), TAA (n = 3), and control patients were analyzed using microarray-based technologies. Additionally, three publicly available bulk RNA-seq studies of TAD (n = 23) and controls (n = 17) and one single-cell RNA-seq study of TAA (n = 8) and controls (n = 3) were analyzed. Differentially expressed genes were identified and used to identify affected pathways in TAD. Five selected genes were validated by quantitative real-time polymerase chain reaction (PCR). Results: We identified 37 genes that were significantly dysregulated in at least three TAD studies—24 of them were not shown to be associated with TAD, yet. Gene ontology analysis showed that immune response was significantly affected. Five of the genes (CCL2, RNASE2, HAVCR2, CXCL8, and IL6R) were revealed as core genes that affect immune response in TAD. We compared the gene expression of those genes to TAA and found that CXCL8, IL6R, and potentially also CCL2 were upregulated in TAD. Conclusions: The identified immune-related genes showed TAD-specificity, independent of possible pre-existing comorbidities like TAA. So, these genes represent potential biomarkers and therapeutic targets linked to the immune response in acute TAD. Additionally, we identified a set of differentially expressed genes that represents a resource for further studies

    Crossovers are associated with mutation and biased gene conversion at recombination hotspots

    No full text
    Meiosis is a potentially important source of germline mutations, as sites of meiotic recombination experience recurrent double-strand breaks (DSBs). However, evidence for a local mutagenic effect of recombination from population sequence data has been equivocal, likely because mutation is only one of several forces shaping sequence variation. By sequencing large numbers of single crossover molecules obtained from human sperm for two recombination hotspots, we find direct evidence that recombination is mutagenic: Crossovers carry more de novo mutations than nonrecombinant DNA molecules analyzed for the same donors and hotspots. The observed mutations were primarily CG to TA transitions, with a higher frequency of transitions at CpG than non-CpGs sites. This enrichment of mutations at CpG sites at hotspots could predominate in methylated regions involving frequent single-stranded DNA processing as part of DSB repair. In addition, our data set provides evidence that GC alleles are preferentially transmitted during crossing over, opposing mutation, and shows that GC-biased gene conversion (gBGC) predominates over mutation in the sequence evolution of hotspots. These findings are consistent with the idea that gBGC could be an adaptation to counteract the mutational load of recombination
    corecore