307 research outputs found

    Magnetization steps in a diluted Heisenberg antiferromagnetic chain: Theory and experiments on TMMC:Cd

    Full text link
    A theory for the equilibrium low-temperature magnetization M of a diluted Heisenberg antiferromagnetic chain is presented. The magnetization curve, M versus B, is calculated using the exact contributions of finite chains with 1 to 5 spins, and the "rise and ramp approximation" for longer chains. Some non-equilibrium effects that occur in a rapidly changing B, are also considered. Specific non-equilibrium models based on earlier treatments of the phonon bottleneck, and of spin flips associated with cross relaxation and with level crossings, are discussed. Magnetization data on powders of TMMC diluted with cadmium [i.e., (CH_3)_4NMn_xCd_(1-x)Cl_3, with 0.16<=x<=0.50 were measured at 0.55 K in 18 T superconducting magnets. The field B_1 at the first MST from pairs is used to determine the NN exchange constant, J, which changes from -5.9 K to -6.5 K as x increases from 0.16 to 0.50. The magnetization curves obtained in the superconducting magnets are compared with simulations based on the equilibrium theory. Data for the differential susceptibility, dM/dB, were taken in pulsed magnetic fields (7.4 ms duration) up to 50 T, with the powder samples in a 1.5 K liquid-helium bath. Non-equilibrium effects, which became more severe as x decreased, were observed. The non-equilibrium effects are tentatively interpreted using the "Inadequate Heat Flow Scenario," or to cross-relaxation, and crossings of energy levels, including those of excited states.Comment: 16 pages, 14 figure

    Quantum computing with antiferromagnetic spin clusters

    Full text link
    We show that a wide range of spin clusters with antiferromagnetic intracluster exchange interaction allows one to define a qubit. For these spin cluster qubits, initialization, quantum gate operation, and readout are possible using the same techniques as for single spins. Quantum gate operation for the spin cluster qubit does not require control over the intracluster exchange interaction. Electric and magnetic fields necessary to effect quantum gates need only be controlled on the length scale of the spin cluster rather than the scale for a single spin. Here, we calculate the energy gap separating the logical qubit states from the next excited state and the matrix elements which determine quantum gate operation times. We discuss spin cluster qubits formed by one- and two-dimensional arrays of s=1/2 spins as well as clusters formed by spins s>1/2. We illustrate the advantages of spin cluster qubits for various suggested implementations of spin qubits and analyze the scaling of decoherence time with spin cluster size.Comment: 15 pages, 7 figures; minor change

    Fostering Self Efficacy as an Ethical Mandate in Health Promotion Practice and Research

    Get PDF
    Self-efficacy, a social psychology concept, is defined as the likelihood of an individual engaging in health behaviors. Correctly understood, authors posit that health care providers and researchers have an ethical mandate to foster self-efficacy in patients. Further, self-efficacy promotes the commonly ascribed moral principles of respect for the person as a being of worth and fosters autonomy. This paper provides an overview of the concept of self-efficacy, provides a brief discussion on the difference between self-esteem and self-efficacy, and discusses its relationship to health promotion and selected moral principles. Health care providers and researchers are challenged to foster self-efficacy among patients and others as a means to facilitate health promotion. The continuous ethical challenge for health care providers, health promotion advocates and researchers is to remain mindful of the complexity of the opportunity to empower others, the privilege to improve the quality of life for others and the responsibility to remain true to the ethical principles at all times. Consideration of self-efficacy as an ethical mandate remains a vital element within health promotion practice and research

    A phone in a basket looks like a knife in a cup: Role-filler independence in visual processing

    Get PDF
    When a piece of fruit is in a bowl, and the bowl is on a table, we appreciate not only the individual objects and their features, but also the relations containment and support, which abstract away from the particular objects involved. Independent representation of roles (e.g., containers vs. supporters) and “fillers” of those roles (e.g., bowls vs. cups, tables vs. chairs) is a core principle of language and higherlevel reasoning. But does such role-filler independence also arise in automatic visual processing? Here, we show that it does, by exploring a surprising error that such independence can produce. In four experiments, participants saw a stream of images containing different objects arranged in forcedynamic relations — e.g., a phone contained in a basket, a marker resting on a garbage can, or a knife sitting in a cup. Participants had to respond to a single target image (e.g., a phone in a basket) within a stream of distractors presented under time constraints. Surprisingly, even though participants completed this task quickly and accurately, they false-alarmed more often to images matching the target’s relational category than to those that did not — even when those images involved completely different objects. In other words, participants searching for a phone in a basket were more likely to mistakenly respond to a knife in a cup than to a marker on a garbage can. Follow-up experiments ruled out strategic responses and also controlled for various confounding image features. We suggest that visual processing represents relations abstractly, in ways that separate roles from fillers

    Systematic review of clinical practice guidelines recommendations about primary cardiovascular disease prevention for older adults

    Get PDF
    Background: Clinical care for older adults is complex and represents a growing problem. They are a diverse patient group with varying needs, frequent presence of multiple comorbidities, and are more susceptible to treatment harms. Thus Clinical Practice Guidelines (CPGs) need to carefully consider older adults in order to guide clinicians. We reviewed CPG recommendations for primary cardiovascular disease (CVD) prevention and examined the extent to which CPGs address issues important for older people identified in the literature. Methods: We searched: 1) two systematic reviews on CPGs for CVD prevention and 2) the National CPG Clearinghouse, G-I-N International CPG Library and Trip databases for CPGs for CVD prevention, hypertension and cholesterol. We conducted our search between April and December 2013. We excluded CPGs for diabetes, chronic kidney disease, HIV, lifestyle, general screening/prevention, and pregnant or pediatric populations. Three authors independently screened citations for inclusion and extracted data. The primary outcomes were presence and extent of recommendations for older people including discussion of: (1) available evidence, (2) barriers to implementation of the CPG, and (3) tailoring management for this group. Results: We found 47 eligible CPGs. There was no mention of older people in 4 (9 %) of the CPGs. Benefits were discussed more frequently than harms. Twenty-three CPGs (49 %) discussed evidence about potential benefits and 18 (38 %) discussed potential harms of CVD prevention in older people. Most CPGs addressed one or more barriers to implementation, often as a short statement. Although 27 CPGs (58 %) mentioned tailoring management to the older patient context (e.g. comorbidities), concrete guidance was rare. Conclusion: Although most CVD prevention CPGs mention the older population to some extent, the information provided is vague and very limited. Older adults represent a growing proportion of the population. Guideline developers must ensure they consider older patients’ needs and provide appropriate advice to clinicians in order to support high quality care for this group. CPGs should at a minimum address the available evidence about CVD prevention for older people, and acknowledge the importance of patient involvement.NHMR

    Expert consensus on an in vitro approach to assess pulmonary fibrogenic potential of aerosolized nanomaterials

    Get PDF
    The increasing use of multi-walled carbon nanotubes (MWCNTs) in consumer products and their potential to induce adverse lung effects following inhalation has lead to much interest in better understanding the hazard associated with these nanomaterials (NMs). While the current regulatory requirement for substances of concern, such as MWCNTs, in many jurisdictions is a 90-day rodent inhalation test, the monetary, ethical, and scientific concerns associated with this test led an international expert group to convene in Washington, DC, USA, to discuss alternative approaches to evaluate the inhalation toxicity of MWCNTs. Pulmonary fibrosis was identified as a key adverse outcome linked to MWCNT exposure, and recommendations were made on the design of an in vitro assay that is predictive of the fibrotic potential of MWCNTs. While fibrosis takes weeks or months to develop in vivo, an in vitro test system may more rapidly predict fibrogenic potential by monitoring pro-fibrotic mediators (e.g., cytokines and growth factors). Therefore, the workshop discussions focused on the necessary specifications related to the development and evaluation of such an in vitro system. Recommendations were made for designing a system using lung-relevant cells co-cultured at the air–liquid interface to assess the pro-fibrogenic potential of aerosolized MWCNTs, while considering human-relevant dosimetry and NM life cycle transformations. The workshop discussions provided the fundamental design components of an air–liquid interface in vitro test system that will be subsequently expanded to the development of an alternative testing strategy to predict pulmonary toxicity and to generate data that will enable effective risk assessment of NMs

    Adhesion Class GPCRs (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Adhesion GPCRs are structurally identified on the basis of a large extracellular region, similar to the Class B GPCR, but which is linked to the 7TM region by a GPCR autoproteolysis-inducing (GAIN) domain [8] containing a GPCR proteolytic site. The N-terminus often shares structural homology with adhesive domains (e.g. cadherins, immunolobulin, lectins) facilitating inter- and matricellular interactions and leading to the term adhesion GPCR [82, 332]. Several receptors have been suggested to function as mechanosensors [254, 234, 315, 32]. The nomenclature of these receptors was revised in 2015 as recommended by NC-IUPHAR and the Adhesion GPCR Consortium [100]
    corecore