284 research outputs found
Recommended from our members
Culture bag systems for clinical applications of adult human neural crest-derived stem cells
Introduction
Facing the challenging treatment of neurodegenerative diseases as well as complex craniofacial injuries such as those common after cancer therapy, the field of regenerative medicine increasingly relies on stem cell transplantation strategies. Here, neural crest-derived stem cells (NCSCs) offer many promising applications, although scale up of clinical-grade processes prior to potential transplantations is currently limiting. In this study, we aimed to establish a clinical-grade, cost-reducing cultivation system for NCSCs isolated from the adult human nose using cGMP-grade Afc-FEP bags.
Methods
We cultivated human neural crest-derived stem cells from inferior turbinate (ITSCs) in a cell culture bag system using Afc-FEP bags in human blood plasma-supplemented medium. Investigations of viability, proliferation and expression profile of bag-cultured ITSCs were followed by DNA-content and telomerase activity determination. Cultivated ITSCs were introduced to directed in vitro differentiation assays to assess their potential for mesodermal and ectodermal differentiation. Mesodermal differentiation was determined using an enzyme activity assay (alkaline phosphatase, ALP), respective stainings (Alizarin Red S, Von Kossa and Oil Red O), and RT-PCR, while immunocytochemistry and synaptic vesicle recycling were applied to assay neuroectodermal differentiation of ITSCs.
Results
When cultivated within Afc-FEP bags, ITSCs grew three-dimensionally in a human blood plasma-derived matrix, thereby showing unchanged morphology, proliferation capability, viability and expression profile in comparison to three dimensionally-cultured ITSCs growing in standard cell culture plastics. Genetic stability of bag-cultured ITSCs was further accompanied by unchanged telomerase activity. Importantly, ITSCs retained their potential to differentiate into mesodermal cell types, particularly including ALP-active, Alizarin Red S-, and Von Kossa-positive osteogenic cell types, as well as adipocytes positive in Oil Red O assays. Bag culture further did not affect the potential of ITSCs to undergo differentiation into neuroectodermal cell types coexpressing β-III-tubulin and MAP2 and exhibiting the capability for synaptic vesicle recycling.
Conclusions
Here, we report for the first time the successful cultivation of human NCSCs within cGMP-grade Afc-FEP bags using a human blood plasma-supplemented medium. Our findings particularly demonstrate the unchanged differentiation capability and genetic stability of the cultivated NCSCs, suggesting the great potential of this culture system for future medical applications in the field of regenerative medicine
Recommended from our members
Single-particle tracking uncovers dynamics of glutamate-induced retrograde transport of NF-κB p65 in living neurons
Retrograde transport of NF-κB from the synapse to the nucleus in neurons is mediated by the dynein/dynactin motor complex and can be triggered by synaptic activation. The calibre of axons is highly variable ranging down to 100 nm, aggravating the investigation of transport processes in neurites of living neurons using conventional light microscopy. In this study we quantified for the first time the transport of the NF-κB subunit p65 using high-density single-particle tracking in combination with photoactivatable fluorescent proteins in living mouse hippocampal neurons. We detected an increase of the mean diffusion coefficient (Dmean) in neurites from 0.12 ± 0.05 µm2/s to 0.61 ± 0.03 µm2/s after stimulation with glutamate. We further observed that the relative amount of retrogradely transported p65 molecules is increased after stimulation. Glutamate treatment resulted in an increase of the mean retrograde velocity from 10.9 ± 1.9 to 15 ± 4.9 µm/s, whereas a velocity increase from 9 ± 1.3 to 14 ± 3 µm/s was observed for anterogradely transported p65. This study demonstrates for the first time that glutamate stimulation leads to an increased mobility of single NF-κB p65 molecules in neurites of living hippocampal neurons
Recommended from our members
1,8-cineol potentiates IRF3-mediated antiviral response in human stem cells and an ex vivo model of rhinosinusitis
Common cold is one of the most frequent human inflammatory diseases caused by viruses and can facilitate bacterial super-infections resulting in sinusitis or pneumonia. The active ingredient of the drug Soledum, 1,8-cineole, is commonly applied for treating inflammatory diseases of the respiratory tract. However, the potential of 1,8-cineole for treating primary viral infections of the respiratory tract remains unclear.
In the present study, we demonstrate for the first time that 1,8-cineole potentiates Poly(I:C)-induced activity of the anti-viral transcription factor Interferon Regulatory Factor 3, while simultaneously reducing pro-inflammatory NF-κB-activity in human cell lines, inferior turbinate stem cells (ITSCs) and ex vivo cultivated human nasal mucosa. Co-treatment of cell lines with Poly(I:C) and 1,8-cineole resulted in significantly increased IRF3 reporter gene activity compared to Poly(I:C) alone, whereas NF-κB-activity was reduced. Accordingly, 1,8-cineole- and Poly(I:C)-treatment led to increased nuclear translocation of IRF3 in ITSCs and a human ex vivo model of rhinosinusitis compared to the Poly(I:C)-treated approach. Nuclear translocation of IRF3 was significantly increased in ITSCs and slice cultures treated with LPS and 1,8-cineole compared to the LPS-treated cells mimicking bacterial infection. Our findings strongly suggest that 1,8-cineole potentiates the antiviral activity of IRF3 in addition to its inhibitory effect on pro-inflammatory NF-κB-signalling and may thus broaden its field of application
Subunit-Specific Role of NF-κB in Cancer
Kaltschmidt B, Greiner J, Kadhim H, Kaltschmidt C. Subunit-Specific Role of NF-κB in Cancer. Biomedicines. 2018;6(2): 44.The transcription factor NF-kB is a key player in inflammation, cancer development, and
progression. NF-kB stimulates cell proliferation, prevents apoptosis, and could promote tumor
angiogenesis as well as metastasis. Extending the commonly accepted role of NF-kB in cancer
formation and progression, different NF-kB subunits have been shown to be active and of particular
importance in distinct types of cancer. Here, we summarize overexpression data of the NF-kB subunits
RELA, RELB, and c-REL (referring to the v-REL, which is the oncogene of Reticuloendotheliosis
virus strain T) as well as of their upstream kinase inhibitor, namely inhibitor of kB kinases (IKK),
in different human cancers, assessed by database mining. These data argue against a universal
mechanism of cancer-mediated activation of NF-kB, and suggest a much more elaborated mode of
NF-kB regulation, indicating a tumor type-specific upregulation of the NF-kB subunits. We further
discuss recent findings showing the diverse roles of NF-kB signaling in cancer development and
metastasis in a subunit-specific manner, emphasizing their specific transcriptional activity and the
role of autoregulation. While non-canonical NF-kB RELB signaling is described to be mostly present
in hematological cancers, solid cancers reveal constitutive canonical NF-kB RELA or c-REL activity.
Providing a linkage to cancer therapy, we discuss the recently described pivotal role of NF-kB c-REL
in regulating cancer-targeting immune responses. In addition, current strategies and ongoing clinical
trials are summarized, which utilize genome editing or drugs to inhibit the NF-kB subunits for
cancer treatment
Recommended from our members
Simple method for sub-diffraction resolution imaging of cellular structures on standard confocal microscopes by three-photon absorption of quantum dots
This study describes a simple technique that improves a recently developed 3D sub-diffraction imaging method based on three-photon absorption of commercially available quantum dots. The method combines imaging of biological samples via tri-exciton generation in quantum dots with deconvolution and spectral multiplexing, resulting in a novel approach for multi-color imaging of even thick biological samples at a 1.4 to 1.9-fold better spatial resolution. This approach is realized on a conventional confocal microscope equipped with standard continuous-wave lasers. We demonstrate the potential of multi-color tri-exciton imaging of quantum dots combined with deconvolution on viral vesicles in lentivirally transduced cells as well as intermediate filaments in three-dimensional clusters of mouse-derived neural stem cells (neurospheres) and dense microtubuli arrays in myotubes formed by stacks of differentiated C2C12 myoblasts
Cyclooxygenase-2 is a neuronal target gene of NF-κB
BACKGROUND: NF-κB is implicated in gene regulation involved in neuronal survival, inflammmatory response and cancer. There are relatively few neuronal target genes of NF-κB characterized. RESULTS: We have identified the neuronal cyclooxygenase-2 (COX-2) as a NF-κB target gene. In organotypic hippocampal slice cultures constitutive NF-κB activity was detected, which was correlated with high anti-COX-2 immunoreactivity. Aspirin a frequently used painkiller inhibits neuronal NF-κB activity in organotypic cultures resulting in a strong inhibition of the NF-κB target gene COX-2. Based on these findings, the transcriptional regulation of COX-2 by NF-κB was investigated. Transient transfections showed a significant increase of COX-2 promoter activity upon stimulation with PMA, an effect which could be obtained also by cotransfection of the NF-κB subunits p65 and p50. In the murine neuroblastoma cell line NB-4, which is characterized by constitutive NF-κB activity, COX-2 promoter activity could not be further increased with PMA or TNF. Constitutive promoter activity could be repressed upon cotransfection of the inhibitory subunit IκB-α. EMSA and mutational analysis conferred the regulatory NF-κB activity to the promoter distal κB-site in the human COX-2 promoter. CONCLUSIONS: NF-κB regulates neuronal COX-2 gene expression, and acts as an upstream target of Aspirin. This extends Aspirin's mode of action from a covalent modification of COX-2 to the upstream regulation of COX-2 gene expression in neurons
NF-KappaB in Long-Term Memory and Structural Plasticity in the Adult Mammalian Brain
Kaltschmidt B, Kaltschmidt C. NF-KappaB in Long-Term Memory and Structural Plasticity in the Adult Mammalian Brain. Frontiers in Molecular Neuroscience. 2015;8: 69.The transcription factor nuclear factor kappaB (NF-κB) is a well-known regulator of inflammation, stress, and immune responses as well as cell survival. In the nervous system, NF-κB is one of the crucial components in the molecular switch that converts short- to long-term memory—a process that requires de novo gene expression. Here, the researches published on NF-κB and downstream target genes in mammals will be reviewed, which are necessary for structural plasticity and long-term memory, both under normal and pathological conditions in the brain. Genetic evidence has revealed that NF-κB regulates neuroprotection, neuronal transmission, and long-term memory. In addition, after genetic ablation of all NF-κB subunits, a severe defect in hippocampal adult neurogenesis was observed during aging. Proliferation of neural precursors is increased; however, axon outgrowth, synaptogenesis, and tissue homeostasis of the dentate gyrus are hampered. In this process, the NF-κB target gene PKAcat and other downstream target genes such as Igf2 are critically involved. Therefore, NF-κB activity seems to be crucial in regulating structural plasticity and replenishment of granule cells within the hippocampus throughout the life. In addition to the function of NF-κB in neurons, we will discuss on a neuroinflammatory role of the transcription factor in glia. Finally, a model for NF-κB homeostasis on the molecular level is presented, in order to explain seemingly the contradictory, the friend or foe, role of NF-κB in the nervous system
On the cytotoxicity of HCR-NTPase in the neuroblastoma cell line SH-SY5Y
Pasdziernik M, Kaltschmidt B, Kaltschmidt C, Klinger C, Kaufmann M. On the cytotoxicity of HCR-NTPase in the neuroblastoma cell line SH-SY5Y. BMC Research Notes. 2009;2(1):102.Background: The human cancer-related nucleoside triphosphatase (HCR-NTPase) is overexpressed in several tumour tissues including neuroblastoma. HCR-NTPase is an enzyme exhibiting a slow in vitro activity in hydrolysing nucleosidetriphosphates. However, its in vivo function is still unknown. To learn more about the physiological role of HCR-NTPase, we both overexpressed and silenced it in the neuroblastoma cell line SH-SY5Y. Findings: No effect was observed when the expression of endogenously expressed HCR-NTPase in the cells was silenced by RNA interference. On the other hand, overexpression of HCR-NTPase led to cytotoxicity of the protein in SH-SY5Y cells. Even if the catalytic essential amino acid glutamate 114 was replaced by alanine (E114A-HCR-NTPase), the protein remained cytotoxic. The results could be confirmed by successfully rescuing the cells via RNA interference. Conclusion: Although expressed in several tumours, at least in SH-SY5Y, HCR-NTPase is not essential for the cells to survive. Increased levels of the protein lead to cytotoxicity due to physical intracellular interactions rather than hydrolysis of nucleosidetriphosphates by its intrinsic residual enzymatic activity
Tumor necrosis factor alpha induced proliferation of adult neural stem cells is mediated via NF-κB
Widera D, Mikenberg I, Elvers M, Kaltschmidt C, Kaltschmidt B. Tumor necrosis factor alpha triggers proliferation of adult neural stem cells via IKK/NF-kappa B signaling. BMC NEUROSCIENCE. 2006;8(Suppl 1):P1
Recommended from our members
Tumor necrosis factor α triggers proliferation of adult neural stem cells via IKK/NF-κB signaling
BACKGROUND: Brain inflammation has been recognized as a complex phenomenon with numerous related aspects. In addition to the very well-described neurodegenerative effect of inflammation, several studies suggest that inflammatory signals exert a potentially positive influence on neural stem cell proliferation, migration and differentiation. Tumor necrosis factor alpha (TNF-α) is one of the best-characterized mediators of inflammation. To date, conclusions about the action of TNF on neural stem or progenitor cells (NSCs, NPCs) have been conflicting. TNF seems to activate NSC proliferation and to inhibit their differentiation into NPCs. The purpose of the present study was to analyze the molecular signal transduction mechanisms induced by TNF and resulting in NSC proliferation. RESULTS: Here we describe for the first time the TNF-mediated signal transduction cascade in neural stem cells (NSCs) that results in increased proliferation. Moreover, we demonstrate IKK-α/β-dependent proliferation and markedly up-regulated cyclin D1 expression after TNF treatment. The significant increase in proliferation in TNF-treated cells was indicated by increased neurosphere volume, increased bromodeoxyuridin (BrdU) incorporation and a higher total cell number. Furthermore, TNF strongly activated nuclear factor-kappa B (NF-κB) as measured by reporter gene assays and by an activity-specific antibody. Proliferation of control and TNF-treated NSCs was strongly inhibited by expression of the NF-κB super-repressor IκB-AA1. Pharmacological blockade of IκB ubiquitin ligase activity led to comparable decreases in NF-κB activity and proliferation. In addition, IKK-β gene product knock-down via siRNA led to diminished NF-κB activity, attenuated cyclin D1 expression and finally decreased proliferation. In contrast, TGFβ-activated kinase 1 (TAK-1) is partially dispensable for TNF-mediated and endogenous proliferation. Understanding stem cell proliferation is crucial for future regenerative and anti-tumor medicine. CONCLUSION: TNF-mediated activation of IKK-β resulted in activation of NF-κB and was followed by up-regulation of the bona-fide target gene cyclin D1. Activation of the canonical NF-κB pathway resulted in strongly increased proliferation of NSCs
- …
