160 research outputs found
Randomised controlled trial of a home-based physical activity intervention in breast cancer survivors
Background: To improve adherence to physical activity (PA), behavioural support in the form of behavioural change counselling may be necessary. However, limited evidence of the effectiveness of home-based PA combined with counselling in breast cancer patients exists. The aim of this current randomised controlled trial with a parallel group design was to evaluate the effectiveness of a home-based PA intervention on PA levels, anthropometric measures, health-related quality of life (HRQoL), and blood biomarkers in breast cancer survivors. Methods: Eighty post-adjuvant therapy invasive breast cancer patients (age = 53.6 ± 9.4 years; height = 161.2 ± 6.8 cm; mass = 68.7 ± 10.5 kg) were randomly allocated to a 6-month home-based PA intervention or usual care. The intervention group received face-to-face and telephone PA counselling aimed at encouraging the achievement of current recommended PA guidelines. All patients were evaluated for our primary outcome, PA (International PA Questionnaire) and secondary outcomes, mass, BMI, body fat %, HRQoL (Functional assessment of Cancer Therapy-Breast), insulin resistance, triglycerides (TG) and total (TC), high-density lipoprotein (HDL-C) and low-density lipoprotein (LDL-C) cholesterol were assessed at baseline and at 6-months. Results: On the basis of linear mixed-model analyses adjusted for baseline values performed on 40 patients in each group, total, leisure and vigorous PA significantly increased from baseline to post-intervention in the intervention compared to usual care (between-group differences, 578.5 MET-min∙wk−1, p = .024, 382.2 MET-min∙wk−1, p = .010, and 264.1 MET-min∙wk−1, p = .007, respectively). Both body mass and BMI decreased significantly in the intervention compared to usual care (between-group differences, −1.6 kg, p = .040, and −.6 kg/m2, p = .020, respectively). Of the HRQoL variables, FACT-Breast, Trial Outcome Index, functional wellbeing, and breast cancer subscale improved significantly in the PA group compared to the usual care group (between-group differences, 5.1, p= .024; 5.6, p = .001; 1.9 p = .025; and 2.8, p=.007, respectively). Finally, TC and LDL-C was significantly reduced in the PA group compared to the usual care group (between-group differences, −.38 mmol∙L−1, p=.001; and −.3 mmol∙L−1, p=.023, respectively). Conclusions: We found that home-based PA resulted in significant albeit small to moderate improvements in selfreported PA, mass, BMI, breast cancer specific HRQoL, and TC and LDL-C compared with usual care
Influence of hypoxia on the domiciliation of Mesenchymal Stem Cells after infusion into rats: possibilities of targeting pulmonary artery remodeling via cells therapies?
BACKGROUND: Bone marrow (BM) cells are promising tools for vascular therapies. Here, we focused on the possibility of targeting the hypoxia-induced pulmonary artery hypertension remodeling with systemic delivery of BM-derived mesenchymal stem cells (MSCs) into non-irradiated rats. METHODS: Six-week-old Wistar rats were exposed to 3-week chronic hypoxia leading to pulmonary artery wall remodeling. Domiciliation of adhesive BM-derived CD45(- )CD73(+ )CD90(+ )MSCs was first studied after a single intravenous infusion of Indium-111-labeled MSCs followed by whole body scintigraphies and autoradiographies of different harvested organs. In a second set of experiments, enhanced-GFP labeling allowed to observe distribution at later times using sequential infusions during the 3-week hypoxia exposure. RESULTS: A 30% pulmonary retention was observed by scintigraphies and no differences were observed in the global repartition between hypoxic and control groups. Intrapulmonary radioactivity repartition was homogenous in both groups, as shown by autoradiographies. BM-derived GFP-labeled MSCs were observed with a global repartition in liver, in spleen, in lung parenchyma and rarely in the adventitial layer of remodeled vessels. Furthermore this global repartition was not modified by hypoxia. Interestingly, these cells displayed in vivo bone marrow homing, proving a preservation of their viability and function. Bone marrow homing of GFP-labeled MSCs was increased in the hypoxic group. CONCLUSION: Adhesive BM-derived CD45(- )CD73(+ )CD90(+ )MSCs are not integrated in the pulmonary arteries remodeled media after repeated intravenous infusions in contrast to previously described in systemic vascular remodeling or with endothelial progenitor cells infusions
TNF-alpha Is Required for the Attraction of Mesenchymal Precursors to White Adipose Tissue in Ob/ob Mice
Most adult tissues harbour a stem cell subpopulation (Mesenchymal Precursors or MPs) that represent a small proportion of the total cell number and have the potential to differentiate into several cell types within the mesenchymal lineage. In adipose tissue, adipocytes account for two-thirds of the total cell number. The remaining cells include blood and endothelial cells, along with adipocyte precursors (adipose MPs). Obesity is defined as an excess of body fat that frequently results in a significant impairment of health. The ob/ob mice bear a mutation in the ob gene that causes a deficiency in the hormone leptin and hence obesity. Here, we present evidence that ob/ob mice have a dramatic decrease in the resident MP pool of several tissues, including squeletal muscle, heart, lung and adipose tissue. Moreover, we show that that there is a migration of MP cells from distant organs, as well as homing of these cells to the adipose tissue mass of the ob/ob mice. We call this process adipotaxis. Once in the adipose tissue, migrant MPs undergoe adipose differentiation, giving rise to new differentiated adipocytes within the adipose mass. Finally, we provide evidence that adipotaxis is largely explained by the production of high levels of Tumor Necrosis Factor-alpha (TNF-α) within the ob/ob adipose tissue. The therapeutic implications for human obesity as well as for regenerative medicine are further discussed in this paper
Clinical Predictors for Procedural Stroke and Implications for Embolic Protection Devices during TAVR: Results from the Multicenter Transcatheter Aortic Valve Replacement In-Hospital Stroke (TASK) Study
\ua9 2022 by the authors. Licensee MDPI, Basel, Switzerland. Background: Data to support the routine use of embolic protection devices for stroke prevention during transcatheter aortic valve replacement (TAVR) are controversial. Identifying patients at high risk for peri-procedural cerebrovascular events may facilitate effective patient selection for embolic protection devices during TAVR. Aim: To generate a risk score model for stratifying TAVR patients according to peri-procedural cerebrovascular events risk. Methods and results: A total of 8779 TAVR patients from 12 centers worldwide were included. Peri-procedural cerebrovascular events were defined as an ischemic stroke or a transient ischemic attack occurring ≤24 h from TAVR. The peri-procedural cerebrovascular events rate was 1.4% (n = 127), which was independently associated with 1-year mortality (hazards ratio (HR) 1.78, 95% confidence interval (CI) 1.06–2.98, p < 0.028). The TASK risk score parameters were history of stroke, use of a non-balloon expandable valve, chronic kidney disease, and peripheral vascular disease, and each parameter was assigned one point. Each one-point increment was associated with a significant increase in peri-procedural cerebrovascular events risk (OR 1.96, 95% CI 1.56–2.45, p < 0.001). The TASK score was dichotomized into very-low, low, intermediate, and high (0, 1, 2, 3–4 points, respectively). The high-risk TASK score group (OR 5.4, 95% CI 2.06–14.16, p = 0.001) was associated with a significantly higher risk of peri-procedural cerebrovascular events compared with the low TASK score group. Conclusions: The proposed novel TASK risk score may assist in the pre-procedural risk stratification of TAVR patients for peri-procedural cerebrovascular events
Determinants of pre-hospital pharmacological intervention and its association with outcome in acute myocardial infarction
BACKGROUND: The aim of this study was a) To identify predictors of the use of aspirin in the pre-hospital setting in acute myocardial infarction (AMI) and b) To analyze whether the use of any of the recommended medications was associated with outcome. METHODS: All patients with a final diagnosis of AMI, transported by the Emergency Medical Services (EMS) and admitted to the coronary care unit at Sahlgrenska University Hospital in Gothenburg, Sweden, in 2009–2011, were included. RESULTS: 1,726 patients were included. 58 % received aspirin by the EMS. Ischemic heart disease (IHD) was suspected in 84 %. Among patients who did not receive aspirin IHD was still suspected in 67 %. Among patients in whom IHD was suspected, and who were not on chronic treatment with aspirin the following predicted its pre-hospital use: a) age (odds ratio 0.98; 95 % confidence interval (CI) 0.96–0.99); b) a history of myocardial infarction (2.21; 1.21–4.04); c) priority given by EMS (8.07; 5.42–12.02); d) ST-elevation on ECG on admission to hospital (2.22; 1.50–3.29); e) oxygen saturation > 90 % (3.37; 1.81–6.27). After adjusting for confounders among patients who were not on chronic aspirin, only nitroglycerin of the recommended medications was associated with a reduced risk of death within 1 year (hazard ratio 0.40; 95 % CI 0.23–0.70). CONCLUSIONS: Less than six out of ten patients with AMI received pre-hospital aspirin. Five clinical factors were independently associated with the pre-hospital administration of aspirin. This suggests that the decision to treat is multifactorial, and it highlights the lack of accurate diagnostic tools in the pre-hospital environment. Nitroglycerin was independently associated with a reduced risk of death, suggesting that we select the use for a low-risk cohort. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13049-015-0188-x) contains supplementary material, which is available to authorized users
Cell Therapy for Cardiovascular Disease: A Comparison of Methods of Delivery
The field of myocardial regeneration utilizing novel cell-based therapies, gene transfer, and growth factors may prove to play an important role in the future management of ischemic heart disease and cardiomyopathy. Phases I and II clinical trials have been published for a variety of biologics utilizing four methods of delivery: systemic infusion, intracoronary infusion, transvenous coronary sinus, and intramyocardial. This review discusses the advantages and disadvantages of the delivery approaches above
Short-Term Exposure of Multipotent Stromal Cells to Low Oxygen Increases Their Expression of CX3CR1 and CXCR4 and Their Engraftment In Vivo
The ability of stem/progenitor cells to migrate and engraft into host tissues is key to their potential use in gene and cell therapy. Among the cells of interest are the adherent cells from bone marrow, referred to as mesenchymal stem cells or multipotent stromal cells (MSC). Since the bone marrow environment is hypoxic, with oxygen tensions ranging from 1% to 7%, we decided to test whether hypoxia can upregulate chemokine receptors and enhance the ability of human MSCs to engraft in vivo. Short-term exposure of MSCs to 1% oxygen increased expression of the chemokine receptors CX3CR1and CXCR4, both as mRNA and as protein. After 1-day exposure to low oxygen, MSCs increased in vitro migration in response to the fractalkine and SDF-1α in a dose dependent manner. Blocking antibodies for the chemokine receptors significantly decreased the migration. Xenotypic grafting into early chick embryos demonstrated cells from hypoxic cultures engrafted more efficiently than cells from normoxic cultures and generated a variety of cell types in host tissues. The results suggest that short-term culture of MSCs under hypoxic conditions may provide a general method of enhancing their engraftment in vivo into a variety of tissues
Mesenchymal Stem Cells Exhibit Firm Adhesion, Crawling, Spreading and Transmigration across Aortic Endothelial Cells: Effects of Chemokines and Shear
Mesenchymal stem cells (MSCs) have anti-inflammatory and immunosuppressive properties and may be useful in the therapy of diseases such as arteriosclerosis. MSCs have some ability to traffic into inflamed tissues, however to exploit this therapeutically their migratory mechanisms need to be elucidated. This study examines the interaction of murine MSCs (mMSCs) with, and their migration across, murine aortic endothelial cells (MAECs), and the effects of chemokines and shear stress. The interaction of mMSCs with MAECs was examined under physiological flow conditions. mMSCs showed lack of interaction with MAECs under continuous flow. However, when the flow was stopped (for 10min) and then started, mMSCs adhered and crawled on the endothelial surface, extending fine microvillous processes (filopodia). They then spread extending pseudopodia in multiple directions. CXCL9 significantly enhanced the percentage of mMSCs adhering, crawling and spreading and shear forces markedly stimulated crawling and spreading. CXCL9, CXCL16, CCL20 and CCL25 significantly enhanced transendothelial migration across MAECs. The transmigrated mMSCs had down-regulated receptors CXCR3, CXCR6, CCR6 and CCR9. This study furthers the knowledge of MSC transendothelial migration and the effects of chemokines and shear stress which is of relevance to inflammatory diseases such as arteriosclerosis
Clinical impact of diabetes mellitus in patients undergoing transcatheter aortic valve replacement
Therapeutic potential of transplanted placental mesenchymal stem cells in treating Chinese miniature pigs with acute liver failure
<p>Abstract</p> <p>Background</p> <p>Stem cell-based therapy to treat liver diseases is a focus of current research worldwide. So far, most such studies depend on rodent hepatic failure models. The purpose of this study was to isolate mesenchymal stem cells from human placenta (hPMSCs) and determine their therapeutic potential for treating Chinese experimental miniature pigs with acute liver failure (ALF).</p> <p>Methods</p> <p>hPMSCs were isolated and analyzed for their purity and differentiation potential before being employed as the donor cells for transplantation. ALF models of Chinese experimental miniature pigs were established and divided into four groups: no cell transplantation; hPMSCs transplantation via the jugular vein; X-ray-treated hPMSCs transplantation via the portal vein; and hPMSCs transplantation via the portal vein. The restoration of biological functions of the livers receiving transplantation was assessed via a variety of approaches such as mortality rate determination, serum biochemical analysis, and histological, immunohistochemical, and genetic analysis.</p> <p>Results</p> <p>hPMSCs expressed high levels of CD29, CD73, CD13, and CD90, had adipogenic, osteogenic, and hepatic differentiation potential. They improved liver functions <it>in vivo </it>after transplantation into the D-galactosamine-injured pig livers as evidenced by the fact that ALT, AST, ALP, CHE, TBIL, and TBA concentrations returned to normal levels in recipient ALF pigs. Meanwhile, histological data revealed that transplantation of hPMSCs via the portal vein reduced liver inflammation, decreased hepatic denaturation and necrosis, and promoted liver regeneration. These ameliorations were not found in the other three groups. The result of 7-day survival rates suggested that hPMSCs transplantation via the portal vein was able to significantly prolong the survival of ALF pigs compared with the other three groups. Histochemistry and RT-PCR results confirmed the presence of transplanted human cells in recipient pig livers (Groups III, IV).</p> <p>Conclusions</p> <p>Our data revealed that hPMSCs could not only differentiate into hepatocyte-like cells <it>in vitro </it>and <it>in vivo</it>, but could also prolong the survival time of ALF pigs. Regarding the transplantation pathways, the left branch of the portal vein inside the liver was superior to the jugular vein pathway. Thus, hPMSCs transplantation through the portal vein by B-ultrasonography may represent a superior approach for treating liver diseases.</p
- …
