406 research outputs found
New tension-compression damage model for complex analysis of concrete structures
A new damage model, based on continuum damage mechanics and simulating the opening, closing, and reopening of cracks in concrete using only one surface of discontinuity, is proposed in this article. The model complies with the thermodynamics principles of nonreversible, isothermal, and adiabatic processes. Two scalar internal variables have been defined: a tensile damage variable d+d+ and a compressive damage variable d-d-; the threshold of damage is controlled by only one surface of discontinuity and a new parameter controlling the damage variable that should be activated. This new parameter represents the ratio of tensile stress to compressive stress in the damaged material. The continuity of response under complex loads, which is one of the aims of this work, is ensured. An adequate response under different types of loads leads to the conclusion that the proposed model provides a powerful tool to numerically analyze reinforced concrete structures. Validation and illustrative examples are included in the article.Peer ReviewedPostprint (author's final draft
Probabilistic dynamic analysis of steel buildings with long duration earthquakes
El análisis probabilista del comportamiento sísmico de una estructura requiere cuantificar las incertidumbres de las variables y parámetros involucrados, incluyendo la acción sísmica y las propiedades mecánicas de sus elementos. En este artículo se analiza el comportamiento sísmico de edificios de acero bajos, medianos y altos, sometidos a las acciones sísmicas de larga duración probables de la Ciudad de México. El análisis se efectúa bajo una perspectiva probabilista. Las acciones sísmicas se han seleccionado de forma que sean compatibles con los espectros de diseño, para suelos blandos y sismos de larga duración de esta área. Los análisis dinámicos, se llevan a cabo usando simulaciones Monte Carlo. La resistencia y la ductilidad de vigas y columnas se consideran como variables aleatorias; las acciones sísmicas también se consideran de forma probabilista. El daño esperado es evaluado con el índice de Park y Ang. Los resultados muestran que las incertidumbres esperadas en la respuesta son significativas, siendo la aleatoriedad de la acción sísmica la principal causa. De la comparación entre los valores medianos del enfoque probabilista con los del caso determinista se observa una buena consistencia de los resultados correspondientes a edificios de baja y mediana altura, siendo menor en el comportamiento no lineal de los edificios altos. Los edificios bajos y medianos analizados tienen un comportamiento adecuado antes las acciones sísmicas de la zona de estudio, pero los edificios altos tienen un mayor riesgo sísmico y podrían tener daños leves o moderados. Se concluye que el enfoque probabilista proporciona información más rica sobre la respuesta estructural.The probabilistic analysis of the seismic performance of a structure requires quantifying the uncertainties of the involved variables and parameters, including the seismic action and mechanical properties of its elements. In this article, the seismic performance of high-rise, mid-rise and low-rise of steel buildings, subjected to long duration seismic actions like those of Mexico City, is analyzed. The analysis is conducted by using a probabilistic approach. The seismic actions are selected to be compatible with the design spectra of the Mexican seismic code for soft soils and long duration earthquakes, characteristic for this region. The dynamic analyses are performed by using Monte Carlo simulations. The strength and ductility of the beams and columns are considered random variables; the seismic actions are also modelled in a probabilistic way. The damage index of Park and Ang is used. The results show that the uncertainties expected in the response are significant, being the randomness of the seismic action the main cause. From the comparison between the mean values of the probabilistic approach and those corresponding to the deterministic case, a good consistency of the result obtained for low-rise and mid-rise buildings is observed. Nevertheless, the consistency is lower in the case of high-rise buildings. The analyzed low-rise and mid-rise buildings show a good seismic performance to seismic actions, but the high-rise buildings show slight or moderate damage. It is concluded that the probabilistic approach provides a more complete information on the structural response.Peer ReviewedPostprint (published version
Hybrid loss exceedance curve (HLEC) for disaster risk assessment
Taken into account that the natural hazard risk is a contingent liability and, therefore, a sovereign risk for national governments, it is important to assess properly the potential losses to design a suitable risk reduction, retention and transfer strategy. In this article, a disaster risk assessment methodology is proposed based on two approaches: on the one hand, the empiric estimation of losses, using information available from local disaster databases, allowing estimating losses due to small-scale events and, on the other hand, probabilistic evaluations to estimate losses for greater or even catastrophic events, for which information usually is not available due to the lack of historical data. A ‘‘hybrid’’ loss exceedance curve is thus determined, which combines the results of these two approaches and represents the disaster risk in a proper and complete way. This curve merges two components: the corresponding to small and moderate losses, calculated using an inductive and retrospective analysis, and the corresponding to extreme losses, calculated using a deductive and prospective analysis. Applications of this risk assessment technique are given in this article for eleven countries
VISCOUS DAMAGE MODEL FOR TIMOSHENKO BEAM STRUCTURES
A local damage constitutive model based on Kachanov’s theory is used within a finite element frame and applied to the case of 2D and 3D Timoshenko beam elements. The model takes into account viscous effects, thus allowing damping to be considered in a rigorous way. A damage index based on potential energy criteria, useful in evaluating the behaviour of structures or of parts of structures, is proposed. The procedure is applied to estimate the damage produced by seismic actions in reinforced concrete building structures, whose response is computed by using a non-linear Newmark-type incremental time integration scheme. Three numerical examples are included; one
of them compares results obtained by using the proposed model with results of a laboratory test.
 
Role of mitochondrial raft-like microdomains in the regulation of cell apoptosis
Lipid rafts are envisaged as lateral assemblies of specific lipids and proteins that dissociate and associate rapidly and form functional clusters in cell membranes. These structural platforms are not confined to the plasma membrane; indeed lipid microdomains are similarly formed at subcellular organelles, which include endoplasmic reticulum, Golgi and mitochondria, named raft-like microdomains. In addition, some components of raft-like microdomains are present within ER-mitochondria associated membranes. This review is focused on the role of mitochondrial raft-like microdomains in the regulation of cell apoptosis, since these microdomains may represent preferential sites where key reactions take place, regulating mitochondria hyperpolarization, fission-associated changes, megapore formation and release of apoptogenic factors. These structural platforms appear to modulate cytoplasmic pathways switching cell fate towards cell survival or death. Main insights on this issue derive from some pathological conditions in which alterations of microdomains structure or function can lead to severe alterations of cell activity and life span. In the light of the role played by raft-like microdomains to integrate apoptotic signals and in regulating mitochondrial dynamics, it is conceivable that these membrane structures may play a role in the mitochondrial alterations observed in some of the most common human neurodegenerative diseases, such as Amyotrophic lateral sclerosis, Huntington's chorea and prion-related diseases. These findings introduce an additional task for identifying new molecular target(s) of pharmacological agents in these pathologies
DNA double-strand break resection occurs during non-homologous end joining in G1 but is distinct from resection during homologous recombination
Canonical non-homologous end joining (c-NHEJ) repairs DNA double-strand breaks (DSBs) in G1 cells with biphasic kinetics. We show that DSBs repaired with slow kinetics, including those localizing to heterochromatic regions or harboring additional lesions at the DSB site, undergo resection prior to repair by c-NHEJ and not alt-NHEJ. Resection-dependent c-NHEJ represents an inducible process during which Plk3 phosphorylates CtIP, mediating its interaction with Brca1 and promoting the initiation of resection. Mre11 exonuclease, EXD2, and Exo1 execute resection, and Artemis endonuclease functions to complete the process. If resection does not commence, then repair can ensue by c-NHEJ, but when executed, Artemis is essential to complete resection-dependent c-NHEJ. Additionally, Mre11 endonuclease activity is dispensable for resection in G1. Thus, resection in G1 differs from the process in G2 that leads to homologous recombination. Resection-dependent c-NHEJ significantly contributes to the formation of deletions and translocations in G1, which represent important initiating events in carcinogenesis
Seismic response and torsional effects of RC structure with irregular plant and variations in diaphragms, designed with Venezuelan codes
The objective of this study is to determine the seismic response and torsional effects of an existing Reinforced Concrete building with irregular plant and five levels projected according to an older version of Venezuelan seismic design code. Two structures were analysed: the original building and a redesigned version. Nonlinear static analysis and nonlinear 3D dynamic analysis were applied, based on registers of three synthetic accelerograms compatible with the elastic design spectrum for the used code. In 3D analysis, four structures were simulated, with and without rigid diaphragms so as to compare the seismic behaviour of the buildings. Through this nonlinear analysis parameters were determined that define the behaviour of the structure, torsional moments and rotations in columns reached for simulated buildings. Also, to obtain damage fragility curves for five states damage were generated. Results show that the
original structure has an inadequate resistant behaviour and a high probability of exceeding the moderate damage state, while the redesigned structure presents good performance under seismic events according to the existing code. It was also observed that maximum torsional effects occur in the entrant corners of the irregular plant, which are reduced in mid-rise buildings by using a rigid
diaphragm
Ground-Shaking Scenarios and Urban Risk Evaluation of Barcelona using the Risk-UE Capacity Spectrum Based Method
The Capacity Spectrum Based Method (CSBM) developed in the framework of the European project Risk-UE has been applied to evaluate the seismic risk for the city of Barcelona, Spain. Accordingly, four damage states are defined for the buildings, the action is expressed in terms of spectral values and the seismic quality of the buildings, that is, their vulnerability, is evaluated by means of capacity spectra. The probabilities of the damage states are obtained considering a lognormal probability distribution. The most relevant seismic risk evaluation results obtained for Barcelona, Spain, are given in the article as scenarios of expected losses
- …
