1,705 research outputs found

    Supersymmetry phenomenology beyond the MSSM after 5/fb of LHC data

    Full text link
    We briefly review the status of motivated beyond-the-MSSM phenomenology in the light of the LHC searches to date. In particular, we discuss the conceptual consequences of the exclusion bounds, of the hint for a Higgs boson at about 125 GeV, and of interpreting the excess of direct CP violation in the charm sector as a signal of New Physics. We try to go into the various topics in a compact way while providing a relatively rich list of references, with particular attention to the most recent developments.Comment: 20 pages + refs. v2: minor modifications, published versio

    Flavor and electroweak symmetry breaking at the TeV scale

    Full text link
    We present a unified picture of flavor and electroweak symmetry breaking at the TeV scale. Flavor and Higgs bosons arise as pseudo-Goldstone modes in a nonlinear sigma model. Explicit collective symmetry breaking yields stable vacuum expectation values and masses protected at one loop by the little-Higgs mechanism. The coupling to the fermions through a Yukawa lagrangian with a U(1) global flavor symmetry generates well-definite mass textures that correctly reproduce the mass hierarchies and mixings of quarks and leptons. The model is more constrained than usual little- Higgs models because of bounds on weak and flavor physics. The main experimental signatures testable at the LHC are a rather large mass mh0 = 317+/-80 GeV for the (lightest) Higgs boson and a characteristic spectrum of new bosons and fermions with masses around the TeV scale

    Radiative Electroweak Symmetry Breaking in a Little Higgs Model

    Full text link
    We present a new Little Higgs model, motivated by the deconstruction of a five-dimensional gauge-Higgs model. The approximate global symmetry is SO(5)0×SO(5)1SO(5)_0\times SO(5)_1, breaking to SO(5)SO(5), with a gauged subgroup of [SU(2)0L×U(1)0R]×O(4)1[SU(2)_{0L}\times U(1)_{0R}]\times O(4)_1, breaking to SU(2)L×U(1)YSU(2)_L \times U(1)_Y. Radiative corrections produce an additional small vacuum misalignment, breaking the electroweak symmetry down to U(1)EMU(1)_{EM}. Novel features of this model are: the only un-eaten pseudo-Goldstone boson in the effective theory is the Higgs boson; the model contains a custodial symmetry, which ensures that T^=0\hat{T}=0 at tree-level; and the potential for the Higgs boson is generated entirely through one-loop radiative corrections. A small negative mass-squared in the Higgs potential is obtained by a cancellation between the contribution of two heavy partners of the top quark, which is readily achieved over much of the parameter space. We can then obtain both a vacuum expectation value of v=246v=246 GeV and a light Higgs boson mass, which is strongly correlated with the masses of the two heavy top quark partners. For a scale of the global symmetry breaking of f=1f=1 TeV and using a single cutoff for the fermion loops, the Higgs boson mass satisfies 120 GeV MH150\lesssim M_H\lesssim150 GeV over much of the range of parameter space. For ff raised to 10 TeV, these values increase by about 40 GeV. Effects at the ultraviolet cutoff scale may also raise the predicted values of the Higgs boson mass, but the model still favors MH200M_H\lesssim 200 GeV.Comment: 32 pages, 10 figures, JHEP style. Version accepted for publication in JHEP. Includes additional discussion of sensitivity to UV effects and fine-tuning, revised Fig. 9, added appendix and additional references

    Invisible Higgs boson decay in the littlest Higgs model with T-parity

    Get PDF
    We study the invisible decay of the Higgs boson into a pair of stable, heavy photons, H -> A_H A_H, in the littlest Higgs model with T-parity. For a symmetry breaking scale of f = 450 GeV, the branching ratio H -> A_H A_H can be as high as 93% for Higgs masses below 150 GeV. For f = 500 GeV, the invisible branching ratio is about 75% in the Higgs mass range 135 - 150 GeV and 10 (5.5)% for m_H = 200 (600) GeV. It drops to a few percent for f larger than 600 GeV. We have found regions in parameter space, allowed by the electroweak precision data, with such low values of f for 115 GeV < m_H < 650 GeV.Comment: 14 pages, 3 figures, Latex; v2: a few comments and references added, typos corrected, conclusions unchanged, version to be published in Physics Letters

    Little Hierarchy, Little Higgses, and a Little Symmetry

    Full text link
    Little Higgs theories are an attempt to address the little hierarchy problem, i.e., the tension between the naturalness of the electroweak scale and the precision measurements showing no evidence for new physics up to 5-10 TeV. In little Higgs theories, the Higgs mass-squareds are protected to the one-loop order from the quadratic divergence. This allows the cutoff to be raised up to \~10 TeV, beyond the scales probed by the precision data. However, strong constraints can still arise from the contributions of the new TeV scale particles and hence re-introduces the fine-tuning problem. In this paper we show that a new symmetry, denoted as T-parity, under which all heavy gauge bosons and scalar triplets are odd, can remove all the tree-level contributions to the electroweak observables and therefore makes the little Higgs theories completely natural. The T-parity can be manifestly implemented in a majority of little Higgs models by following the most general construction of the low energy effective theory a la Callan, Coleman, Wess and Zumino. In particular, we discuss in detail how to implement the T-parity in the littlest Higgs model based on SU(5)/SO(5). The symmetry breaking scale f can be even lower than 500 GeV if the contributions from the unknown UV physics at the cutoff are somewhat small. The existence of TT-parity has drastic impacts on the phenomenology of the little Higgs theories. The T-odd particles need to be pair-produced and will cascade down to the lightest T-odd particle (LTP) which is stable. A neutral LTP gives rise to missing energy signals at the colliders which can mimic supersymmetry. It can also serve as a good dark matter candidate.Comment: 20 pages, 2 figures, RevTeX; v2: Yukawa sector in the SU(5)/SO(5) model slightly modified. Also added comments on the Dirac mass term for the fermionic doublet partner; v3: clarifying comments on the modified Yukawa sector. version to appear on JHE

    General Issues Connecting Flavor Symmetry and Supersymmetry

    Full text link
    We motivate and construct supersymmetric theories with continuous flavor symmetry, under which the electroweak Higgs doublets transform non-trivially. Flavor symmetry is spontaneously broken at a large mass scale in a sector of gauge-singlet fields; the light Higgs multiplets naturally emerge as special linear combinations that avoid acquiring the generic large mass. Couplings of the light Higgs doublets to light moduli fields from the singlet sector could lead to important effects in the phenomenology of the Higgs sector.Comment: 5 page

    T-parity, its problems and their solution

    Full text link
    We point out a basic difficulty in the construction of little-Higgs models with T-parity which is overlooked by large part of the present literature. Almost all models proposed so far fail to achieve their goal: they either suffer from sizable electroweak corrections or from a breakdown of collective breaking. We provide a model building recipe to bypass the above problem and apply it to build the simplest T-invariant extension of the Littlest Higgs. Our model predicts additional T-odd pseudo-Goldstone bosons with weak scale masses.Comment: 25 pages, 2 appendice

    Fermion Masses and Mixings in the Little Flavon Model

    Full text link
    We present a complete analysis of the fermion masses and mixing matrices in the framework of the little flavon model. In this model textures are generated by coupling the fermions to scalar fields, the little flavons, that are pseudo-Goldstone bosons of the breaking of a global SU(6) symmetry. The Yukawa couplings arise from the vacuum expectation values of the flavon fields, their sizes controlled by a potential a la Coleman-Weinberg. Quark and lepton mass hierarchies and mixing angles are accomodated within the effective approach in a natural manner.Comment: 11 pages, RevTeX4, version to appear on Phys. Rev.

    Strong, weak and flavor scalar triplets for the CDF Wjj anomaly

    Full text link
    A model describing the 4.1\sigma\ Wjj anomaly observed by the CDF experiment at the Tevatron collider is introduced. It features new scalar particles which are charged both under the SU(3)_C and the SU(2)_L gauge groups and which couple to pairs of quarks. We introduce several identical replicas of the scalar multiplets in order to leave an unbroken U(3)_Q x U(3)_U x U(3)_D flavor symmetry to satisfy the constraints coming from flavor physics. We discuss the LHC reach on the new scalar resonances both in the resonant production channel (with the Wjj final state) and in the QCD pair production channel (with the 4j final state).Comment: 17 pages, 6 figures and 4 table

    On the Standard Model prediction for BR(B{s,d} to mu+ mu-)

    Full text link
    The decay Bs to mu+ mu- is one of the milestones of the flavor program at the LHC. We reappraise its Standard Model prediction. First, by analyzing the theoretical rate in the light of its main parametric dependence, we highlight the importance of a complete evaluation of higher-order electroweak corrections, at present known only in the large-mt limit, and leaving sizable dependence on the definition of electroweak parameters. Using insights from a complete calculation of such corrections for K to pi bar{nu} nu decays, we find a scheme in which NLO electroweak corrections are likely to be negligible. Second, we address the issue of the correspondence between the initial and the final state detected by the experiments, and those used in the theoretical prediction. Particular attention is devoted to the effect of the soft radiation, that has not been discussed for this mode in the previous literature, and that can lead to O(10%) corrections to the decay rate. The "non-radiative" branching ratio (that is equivalent to the branching ratio fully inclusive of bremsstrahlung radiation) is estimated to be (3.23 +/- 0.27) x 10^{-9} for the flavor eigenstate, with the main uncertainty resulting from the value of f_{Bs}, followed by the uncertainty due to higher order electroweak corrections. Applying the same strategy to Bd to mu+ mu-, we find for its non-radiative branching ratio (1.07 +/- 0.10) x 10^{-10}.Comment: 15 pages. v3: very minor changes to match the journal version (EPJC
    corecore