584 research outputs found

    Ethical Considerations and Fairness in the Use of Artificial Intelligence for Neuroradiology.

    Get PDF
    In this review, concepts of algorithmic bias and fairness are defined qualitatively and mathematically. Illustrative examples are given of what can go wrong when unintended bias or unfairness in algorithmic development occurs. The importance of explainability, accountability, and transparency with respect to artificial intelligence algorithm development and clinical deployment is discussed. These are grounded in the concept of primum no nocere (first, do no harm). Steps to mitigate unfairness and bias in task definition, data collection, model definition, training, testing, deployment, and feedback are provided. Discussions on the implementation of fairness criteria that maximize benefit and minimize unfairness and harm to neuroradiology patients will be provided, including suggestions for neuroradiologists to consider as artificial intelligence algorithms gain acceptance into neuroradiology practice and become incorporated into routine clinical workflow

    Consensus recommendations for a standardized brain tumor imaging protocol for clinical trials in brain metastases.

    Get PDF
    A recent meeting was held on March 22, 2019, among the FDA, clinical scientists, pharmaceutical and biotech companies, clinical trials cooperative groups, and patient advocacy groups to discuss challenges and potential solutions for increasing development of therapeutics for central nervous system metastases. A key issue identified at this meeting was the need for consistent tumor measurement for reliable tumor response assessment, including the first step of standardized image acquisition with an MRI protocol that could be implemented in multicenter studies aimed at testing new therapeutics. This document builds upon previous consensus recommendations for a standardized brain tumor imaging protocol (BTIP) in high-grade gliomas and defines a protocol for brain metastases (BTIP-BM) that addresses unique challenges associated with assessment of CNS metastases. The "minimum standard" recommended pulse sequences include: (i) parameter matched pre- and post-contrast inversion recovery (IR)-prepared, isotropic 3D T1-weighted gradient echo (IR-GRE); (ii) axial 2D T2-weighted turbo spin echo acquired after injection of gadolinium-based contrast agent and before post-contrast 3D T1-weighted images; (iii) axial 2D or 3D T2-weighted fluid attenuated inversion recovery; (iv) axial 2D, 3-directional diffusion-weighted images; and (v) post-contrast 2D T1-weighted spin echo images for increased lesion conspicuity. Recommended sequence parameters are provided for both 1.5T and 3T MR systems. An "ideal" protocol is also provided, which replaces IR-GRE with 3D TSE T1-weighted imaging pre- and post-gadolinium, and is best performed at 3T, for which dynamic susceptibility contrast perfusion is included. Recommended perfusion parameters are given

    Consensus recommendations for a standardized Brain Tumor Imaging Protocol in clinical trials

    Get PDF
    A recent joint meeting was held on January 30, 2014, with the US Food and Drug Administration (FDA), National Cancer Institute (NCI), clinical scientists, imaging experts, pharmaceutical and biotech companies, clinical trials cooperative groups, and patient advocate groups to discuss imaging endpoints for clinical trials in glioblastoma. This workshop developed a set of priorities and action items including the creation of a standardized MRI protocol for multicenter studies. The current document outlines consensus recommendations for a standardized Brain Tumor Imaging Protocol (BTIP), along with the scientific and practical justifications for these recommendations, resulting from a series of discussions between various experts involved in aspects of neuro-oncology neuroimaging for clinical trials. The minimum recommended sequences include: (i) parameter-matched precontrast and postcontrast inversion recovery-prepared, isotropic 3D T1-weighted gradient-recalled echo; (ii) axial 2D T2-weighted turbo spin-echo acquired after contrast injection and before postcontrast 3D T1-weighted images to control timing of images after contrast administration; (iii) precontrast, axial 2D T2-weighted fluid-attenuated inversion recovery; and (iv) precontrast, axial 2D, 3-directional diffusion-weighted images. Recommended ranges of sequence parameters are provided for both 1.5 T and 3 T MR system

    BioDMET: a physiologically based pharmacokinetic simulation tool for assessing proposed solutions to complex biological problems

    Get PDF
    We developed a detailed, whole-body physiologically based pharmacokinetic (PBPK) modeling tool for calculating the distribution of pharmaceutical agents in the various tissues and organs of a human or animal as a function of time. Ordinary differential equations (ODEs) represent the circulation of body fluids through organs and tissues at the macroscopic level, and the biological transport mechanisms and biotransformations within cells and their organelles at the molecular scale. Each major organ in the body is modeled as composed of one or more tissues. Tissues are made up of cells and fluid spaces. The model accounts for the circulation of arterial and venous blood as well as lymph. Since its development was fueled by the need to accurately predict the pharmacokinetic properties of imaging agents, BioDMET is more complex than most PBPK models. The anatomical details of the model are important for the imaging simulation endpoints. Model complexity has also been crucial for quickly adapting the tool to different problems without the need to generate a new model for every problem. When simpler models are preferred, the non-critical compartments can be dynamically collapsed to reduce unnecessary complexity. BioDMET has been used for imaging feasibility calculations in oncology, neurology, cardiology, and diabetes. For this purpose, the time concentration data generated by the model is inputted into a physics-based image simulator to establish imageability criteria. These are then used to define agent and physiology property ranges required for successful imaging. BioDMET has lately been adapted to aid the development of antimicrobial therapeutics. Given a range of built-in features and its inherent flexibility to customization, the model can be used to study a variety of pharmacokinetic and pharmacodynamic problems such as the effects of inter-individual differences and disease-states on drug pharmacokinetics and pharmacodynamics, dosing optimization, and inter-species scaling. While developing a tool to aid imaging agent and drug development, we aimed at accelerating the acceptance and broad use of PBPK modeling by providing a free mechanistic PBPK software that is user friendly, easy to adapt to a wide range of problems even by non-programmers, provided with ready-to-use parameterized models and benchmarking data collected from the peer-reviewed literature

    Diffusion MRI quality control and functional diffusion map results in ACRIN 6677/RTOG 0625: A multicenter, randomized, phase II trial of bevacizumab and chemotherapy in recurrent glioblastoma

    Get PDF
    Functional diffusion mapping (fDM) is a cancer imaging technique that quantifies voxelwise changes in apparent diffusion coefficient (ADC). Previous studies have shown value of fDMs in bevacizumab therapy for recurrent glioblastoma multiforme (GBM). The aim of the present study was to implement explicit criteria for diffusion MRI quality control and independently evaluate fDM performance in a multicenter clinical trial (RTOG 0625/ACRIN 6677). A total of 123 patients were enrolled in the current multicenter trial and signed institutional review board-approved informed consent at their respective institutions. MRI was acquired prior to and 8 weeks following therapy. A 5-point QC scoring system was used to evaluate DWI quality. fDM performance was evaluated according to the correlation of these metrics with PFS and OS at the first follow-up time-point. Results showed ADC variability of 7.3% in NAWM and 10.5% in CSF. A total of 68% of patients had usable DWI data and 47% of patients had high quality DWI data when also excluding patients that progressed before the first follow-up. fDM performance was improved by using only the highest quality DWI. High pre-treatment contrast enhancing tumor volume was associated with shorter PFS and OS. A high volume fraction of increasing ADC after therapy was associated with shorter PFS, while a high volume fraction of decreasing ADC was associated with shorter OS. In summary, DWI in multicenter trials are currently of limited value due to image quality. Improvements in consistency of image quality in multicenter trials are necessary for further advancement of DWI biomarkers

    Consensus recommendations for a standardized Brain Tumor Imaging Protocol in clinical trials

    Full text link
    A recent joint meeting was held on January 30, 2014, with the US Food and Drug Administration (FDA), National Cancer Institute (NCI), clinical scientists, imaging experts, pharmaceutical and biotech companies, clinical trials cooperative groups, and patient advocate groups to discuss imaging endpoints for clinical trials in glioblastoma. This workshop developed a set of priorities and action items including the creation of a standardized MRI protocol for multicenter studies. The current document outlines consensus recommendations for a standardized Brain Tumor Imaging Protocol (BTIP), along with the scientific and practical justifications for these recommendations, resulting from a series of discussions between various experts involved in aspects of neuro-oncology neuroimaging for clinical trials. The minimum recommended sequences include: (i) parameter-matched precontrast and postcontrast inversion recovery-prepared, isotropic 3D T1-weighted gradient-recalled echo; (ii) axial 2D T2-weighted turbo spin-echo acquired after contrast injection and before postcontrast 3D T1-weighted images to control timing of images after contrast administration; (iii) precontrast, axial 2D T2-weighted fluid-attenuated inversion recovery; and (iv) precontrast, axial 2D, 3-directional diffusion-weighted images. Recommended ranges of sequence parameters are provided for both 1.5 T and 3 T MR systems
    corecore