168 research outputs found
Oral administration of Lactococcus lactis expressing synthetic genes of myelin antigens in decreasing experimental autoimmune encephalomyelitis in rats
ABSTRACT
Background: Multiple sclerosis is a human autoimmunological disease that causes neurodegeneration. One of the potential ways to stop its development is induction of oral tolerance, whose effect lies in decreasing immune response to the fed antigen. It was shown on animal models that administration of specific epitopes of the three main myelin proteins, myelin oligodendrocyte glycoprotein (MOG), myelin basic protein (MBP) and proteolipid protein (PLP) results in induction of oral tolerance and suppression of disease symptoms. Application of bacterial cells to produce and deliver antigens to gut mucosa seems to be an attractive method for oral tolerance induction in treatment of diseases with autoimmune background.
Material/Methods: Synthetic genes of MOG35-55, MBP85-97 and PLP139-151 myelin epitopes were generated and cloned in Lactococcus lactis under a CcpA-regulated promoter. The tolerogenic effect of bacterial preparations was tested on experimental autoimmune encephalomyelitis, the animal model of MS. EAE was induced in rats by intradermal injection of guinea pig homogenate into hind paws.
Results: Rats were administered preparations containing whole-cell lysates of L. lactis producing myelin antigens using different feeding schemes. Our study demonstrates that 20-fold, but not 4-fold, intragastric administration of autoantigen-expressing L. lactis cells under specific conditions reduces the clinical symptoms of EAE in rats.
Conclusions: The present study evaluates the use of myelin antigens produced in L. lactis in inhibiting the on-set of experimental autoimmune encephalomyelitis in rats. Obtained results indicate that application of such recombinant cells can be an attractive method of oral tolerance induction
ClaR—a novel key regulator of cellobiose and lactose metabolism in Lactococcus lactis IL1403
In a number of previous studies, our group has discovered an alternative pathway for lactose utilization in Lactococcus lactis that, in addition to a sugar-hydrolyzing enzyme with both P-β-glucosidase and P-β-galactosidase activity (BglS), engages chromosomally encoded components of cellobiose-specific PTS (PTSCel-Lac), including PtcA, PtcB, and CelB. In this report, we show that this system undergoes regulation via ClaR, a novel activator protein from the RpiR family of transcriptional regulators. Although RpiR proteins are widely distributed among lactic acid bacteria, their roles have yet to be confirmed by functional assays. Here, we show that ClaR activity depends on intracellular cellobiose-6-phosphate availability, while other sugars such as glucose or galactose have no influence on it. We also show that ClaR is crucial for activation of the bglS and celB expression in the presence of cellobiose, with some limited effects on ptcA and ptcB activation. Among 190 of carbon sources tested, the deletion of claR reduces L. lactis growth only in lactose- and/or cellobiose-containing media, suggesting a narrow specificity of this regulator within the context of sugar metabolism
Recombinant Lactococcus lactis expressing haemagglutinin from a polish avian H5N1 isolate and its immunological effect in preliminary animal trials.
Lactic acid bacteria (LAB) are Gram-positive, non-pathogenic microorganisms that are gaining much interest as antigen producers for development of live vaccine vectors. Heterologous proteins of different origin have been successfully expressed in such LAB species as Lactococcus lactis. Recombinant L. lactis strains have been shown to induce specific local and systemic immune responses against various antigens. Our study aimed at constructing a L. lactis strain expressing haemagglutinin of the Polish avian H5H1 influenza isolate and examining its effect on animals. Expression of the cloned H5 gene was achieved using the nisin-controlled gene expression system. Detection of the intracellular H5 antigen produced in L. lactis was performed by Western blot analysis and confirmed using Mass Spectrometry. The potential of L. lactis recombinant cells to induce an immune response was examined by setting up preliminary immunization trials on mice and chicken. Obtained sera were tested for specific antibodies by ELISA assays. The results of these preliminary studies are a promising step toward developing a vaccine against the avian bird flu using Lactococcus lactis cells as bioreactors for efficient antigen production and delivery to the mucosal surface
Effect of recombinant Lactococcus lactis producing myelin peptides on neuroimmunological changes in rats with experimental allergic encephalomyelitis
Multiple sclerosis (MS) is a human autoimmune neurodegenerative disease with an unknown etiology. Despite
various therapies, there is no effective cure for MS. Since the mechanism of the disease is based on autoreactive
T-cell responses directed against myelin antigens, oral tolerance is a promising approach for the MS treatment. Here,
the experiments were performed to assess the impact of oral administration of recombinant Lactococcus lactis producing
encephalogenic fragments of three myelin proteins: myelin basic protein, proteolipid protein, and myelin oligodendrocyte
glycoprotein, on neuroimmunological changes in rats with experimental allergic encephalomyelitis (EAE)
– an animal model of MS.
Lactococcus lactis whole-cell lysates were administered intragastrically at two doses (103 and 106 colony forming
units) in a twenty-fold feeding regimen to Lewis rats with EAE. Spinal cord slices were subjected to histopathological
analysis and morphometric evaluation, and serum levels of cytokines (IL-1b, IL-10, TNF-α and IFN-γ) were
measured. Results showed that administration of the L. lactis preparations at the tested doses to rats with EAE,
diminished the histopathological changes observed in EAE rats and reduced the levels of serum IL-1b, IL-10 and
TNF-α, previously increased by evoking EAE. This suggests that oral delivery of L. lactis producing myelin peptide
fragments could be an alternative strategy to induce oral tolerance for the treatment of MS
In vitro characteristics of Lactobacillus spp. strains isolated from the chicken digestive tract and their role in the inhibition of Campylobacter colonization
Campylobacter jejuni/coli infections are the leading cause of bacterial diarrheal illnesses in humans. Many epidemiological studies indicate that improperly prepared meat from chickens that carry a high load of Campylobacter in their intestinal tracts is the key source of human infections. LAB, mainly members of the Lactococcus and Lactobacillus genera, increasingly have been tested as vehicles for the delivery of heterologous bacterial or viral antigens to animal mucosal immune systems. Thus, the objective of this study was to isolate, identify, and characterize Lactobacillus spp. strains isolated from chickens bred in Poland. Their ability to decrease the level of bird gut colonization by C. jejuni strain was also analyzed. First, the influence of the different chicken rearing systems was evaluated, especially the effect of diets on the Lactobacillus species that colonize the gut of chickens. Next, selected strains were analyzed in terms of their anti-Campylobacter activity in vitro; potential probiotic traits such as adhesion properties, bile and low pH tolerance; and their ability to grow on a defined carbon source. Given that improperly prepared chicken meat is the main source of human infection by Campylobacter, the selected strains were also assessed for their ability to inhibit Campylobacter colonization in the bird's intestine. These experiments revealed enormous physiological diversity among the Lactobacillus genus strains. Altogether, our results showed that L. plantarum strains isolated from the digestive tracts of chickens bred in Poland displayed some probiotic attributes in vitro and were able to decrease the level of bird gut colonization by C. jejuni strain. This suggests that they can be employed as vectors to deliver Campylobacter immunodominant proteins to the bird's immune system to strengthen the efficacy of in ovo vaccination
Contribution of plasmid-encoded peptidase S8 (PrtP) to adhesion and transit in the gut of Lactococcus lactis IBB477 strain
The ability of Lactococcus lactis to adhere to the
intestinal mucosa can potentially prolong the contact with the host, and therefore favour its persistence in the gut. In the present study, the contribution of plasmid-encoded factors to the adhesive and transit properties of the L. lactis subsp. cremoris IBB477 strain was investigated. Plasmid-cured derivatives as well as deletion mutants were obtained and analysed. Adhesion tests were performed using non-coated polystyrene plates, plates coated with mucin or fibronectin and mucus-secreting HT29-MTX intestinal epithelial cells.
The results indicate that two plasmids, pIBB477a and b, are
involved in adhesion of the IBB477 strain. One of the genes
localised on plasmid pIBB477b (AJ89_14230), which encodes
cell wall-associated peptidase S8 (PrtP), mediates adhesion
of the IBB477 strain to bare, mucin- and fibronectincoated
polystyrene, as well as to HT29-MTX cells.
Interactions between bacteria and mucus secreted by HT29-
MTX cells were further investigated by fluorescent staining
and confocal microscopy. Confocal images showed that IBB477 forms dense clusters embedded in secreted mucus.
Finally, the ability of IBB477 strain and its ΔprtP deletion
mutant to colonise the gastrointestinal tract of conventional C57Bl/6mice was determined. Both strains were present in the gut for up to 72 h. In summary, adhesion and persistence of IBB477 were analysed by in vitro and in vivo approaches, respectively. Our studies revealed that plasmidic genes encoding cell surface proteins are more involved in the adhesion of IBB477 strain than in the ability to confer a selective advantage in the gut
From DNA sequence to application: possibilities and complications
The development of sophisticated genetic tools during the past 15 years have facilitated a tremendous increase of fundamental and application-oriented knowledge of lactic acid bacteria (LAB) and their bacteriophages. This knowledge relates both to the assignments of open reading frames (ORF’s) and the function of non-coding DNA sequences. Comparison of the complete nucleotide sequences of several LAB bacteriophages has revealed that their chromosomes have a fixed, modular structure, each module having a set of genes involved in a specific phase of the bacteriophage life cycle. LAB bacteriophage genes and DNA sequences have been used for the construction of temperature-inducible gene expression systems, gene-integration systems, and bacteriophage defence systems.
The function of several LAB open reading frames and transcriptional units have been identified and characterized in detail. Many of these could find practical applications, such as induced lysis of LAB to enhance cheese ripening and re-routing of carbon fluxes for the production of a specific amino acid enantiomer. More knowledge has also become available concerning the function and structure of non-coding DNA positioned at or in the vicinity of promoters. In several cases the mRNA produced from this DNA contains a transcriptional terminator-antiterminator pair, in which the antiterminator can be stabilized either by uncharged tRNA or by interaction with a regulatory protein, thus preventing formation of the terminator so that mRNA elongation can proceed. Evidence has accumulated showing that also in LAB carbon catabolite repression in LAB is mediated by specific DNA elements in the vicinity of promoters governing the transcription of catabolic operons.
Although some biological barriers have yet to be solved, the vast body of scientific information presently available allows the construction of tailor-made genetically modified LAB. Today, it appears that societal constraints rather than biological hurdles impede the use of genetically modified LAB.
Lactic Acid Bacteria Resistance to Bacteriophage and Prevention Techniques to Lower Phage Contamination in Dairy Fermentation
The Cronobacter genus: ubiquity and diversity
Members of the Cronobacter genus (formerly Enterobacter sakazakii) have become associated with neonatal infections and in particular contaminated reconstituted infant formula. However this is only one perspective of the organism since the majority of infections are in the adult population, and the organism has been isolated from the enteral feeding tubes of neonates on non-formula diets. In recent years methods of detection from food and environmental sources have improved, though accurate identification has been problematic. The need for robust identification is essential in order to implement recent Codex Alimentarius Commission (2008) and related microbiological criteria for powdered infant formula (PIF; intended target age 0-6 months). Genomic analysis of emergent pathogens is of considerable advantage in both improving detection methods, and understanding the evolution of virulence. One ecosystem for Cronobacter is on plant material which may enable the organism to resist desiccation, adhere to surfaces, and resist some antimicrobial agents. These traits may also confer survival mechanisms of relevance in food manufacturing and also virulence mechanisms
- …
