319 research outputs found
Mass hierarchy, 2-3 mixing and CP-phase with Huge Atmospheric Neutrino Detectors
We explore the physics potential of multi-megaton scale ice or water
Cherenkov detectors with low ( GeV) threshold. Using some proposed
characteristics of the PINGU detector setup we compute the distributions of
events versus neutrino energy and zenith angle , and study
their dependence on yet unknown neutrino parameters. The
regions are identified where the distributions have the highest sensitivity to
the neutrino mass hierarchy, to the deviation of the 2-3 mixing from the
maximal one and to the CP-phase. We evaluate significance of the measurements
of the neutrino parameters and explore dependence of this significance on the
accuracy of reconstruction of the neutrino energy and direction. The effect of
degeneracy of the parameters on the sensitivities is also discussed. We
estimate the characteristics of future detectors (energy and angle resolution,
volume, etc.) required for establishing the neutrino mass hierarchy with high
confidence level. We find that the hierarchy can be identified at --
level (depending on the reconstruction accuracies) after 5 years of
PINGU operation.Comment: 39 pages, 21 figures. Description of Fig.3 correcte
Effects of Supersymmetric Threshold Corrections on High-Scale Flavor Textures
Integration of superpartners out of the spectrum induces potentially large
contributions to Yukawa couplings. These corrections, the supersymmetric
threshold corrections, therefore influence the CKM matrix prediction in a
non-trivial way. We study effects of threshold corrections on high-scale flavor
structures specified at the gauge coupling unification scale in supersymmetry.
In our analysis, we first consider high-scale Yukawa textures which qualify
phenomenologically viable at tree level, and find that they get completely
disqualified after incorporating the threshold corrections. Next, we consider
Yukawa couplings, such as those with five texture zeroes, which are incapable
of explaining flavor-changing proceses. Incorporation of threshold corrections,
however, makes them phenomenologically viable textures. Therefore,
supersymmetric threshold corrections are found to leave observable impact on
Yukawa couplings of quarks, and any confrontation of high-scale textures with
experiments at the weak scale must take into account such corrections.Comment: 25 pages, submitted to JHE
Constraining Non-Standard Interactions of the Neutrino with Borexino
We use the Borexino 153.6 ton.year data to place constraints on non-standard
neutrino-electron interactions, taking into account the uncertainty in the 7Be
solar neutrino flux, and backgrounds due to 85Kr and 210Bi beta-decay. We find
that the bounds are comparable to existing bounds from all other experiments.
Further improvement can be expected in Phase II of Borexino due to the
reduction in the 85Kr background.Comment: 21 pages, 16 pdf figures, 2 tables. Analysis updated including the
uncertainty in sin^2\theta_{23}. Accepted in JHE
Testing matter effects in propagation of atmospheric and long-baseline neutrinos
We quantify our current knowledge of the size and flavor structure of the
matter effects in the evolution of atmospheric and long-baseline neutrinos
based solely on the analysis of the corresponding neutrino data. To this aim we
generalize the matter potential of the Standard Model by rescaling its
strength, rotating it away from the e-e sector, and rephasing it with respect
to the vacuum term. This phenomenological parametrization can be easily
translated in terms of non-standard neutrino interactions in matter. We show
that in the most general case, the strength of the potential cannot be
determined solely by atmospheric and long-baseline data. However its flavor
composition is very much constrained and the present determination of the
neutrino masses and mixing is robust under its presence. We also present an
update of the constraints arising from this analysis in the particular case in
which no potential is present in the e-mu and e-tau sectors. Finally we
quantify to what degree in this scenario it is possible to alleviate the
tension between the oscillation results for neutrinos and antineutrinos in the
MINOS experiment and show the relevance of the high energy part of the spectrum
measured at MINOS.Comment: PDFLaTeX file using JHEP3 class, 25 pages, 7 figures included.
Accepted for publication in JHE
Mass hierarchy discrimination with atmospheric neutrinos in large volume ice/water Cherenkov detectors
Large mass ice/water Cherenkov experiments, optimized to detect low energy
(1-20 GeV) atmospheric neutrinos, have the potential to discriminate between
normal and inverted neutrino mass hierarchies. The sensitivity depends on
several model and detector parameters, such as the neutrino flux profile and
normalization, the Earth density profile, the oscillation parameter
uncertainties, and the detector effective mass and resolution. A proper
evaluation of the mass hierarchy discrimination power requires a robust
statistical approach. In this work, the Toy Monte Carlo, based on an extended
unbinned likelihood ratio test statistic, was used. The effect of each model
and detector parameter, as well as the required detector exposure, was then
studied. While uncertainties on the Earth density and atmospheric neutrino flux
profiles were found to have a minor impact on the mass hierarchy
discrimination, the flux normalization, as well as some of the oscillation
parameter (\Delta m^2_{31}, \theta_{13}, \theta_{23}, and \delta_{CP})
uncertainties and correlations resulted critical. Finally, the minimum required
detector exposure, the optimization of the low energy threshold, and the
detector resolutions were also investigated.Comment: 23 pages, 16 figure
Cluster Lenses
Clusters of galaxies are the most recently assembled, massive, bound
structures in the Universe. As predicted by General Relativity, given their
masses, clusters strongly deform space-time in their vicinity. Clusters act as
some of the most powerful gravitational lenses in the Universe. Light rays
traversing through clusters from distant sources are hence deflected, and the
resulting images of these distant objects therefore appear distorted and
magnified. Lensing by clusters occurs in two regimes, each with unique
observational signatures. The strong lensing regime is characterized by effects
readily seen by eye, namely, the production of giant arcs, multiple-images, and
arclets. The weak lensing regime is characterized by small deformations in the
shapes of background galaxies only detectable statistically. Cluster lenses
have been exploited successfully to address several important current questions
in cosmology: (i) the study of the lens(es) - understanding cluster mass
distributions and issues pertaining to cluster formation and evolution, as well
as constraining the nature of dark matter; (ii) the study of the lensed objects
- probing the properties of the background lensed galaxy population - which is
statistically at higher redshifts and of lower intrinsic luminosity thus
enabling the probing of galaxy formation at the earliest times right up to the
Dark Ages; and (iii) the study of the geometry of the Universe - as the
strength of lensing depends on the ratios of angular diameter distances between
the lens, source and observer, lens deflections are sensitive to the value of
cosmological parameters and offer a powerful geometric tool to probe Dark
Energy. In this review, we present the basics of cluster lensing and provide a
current status report of the field.Comment: About 120 pages - Published in Open Access at:
http://www.springerlink.com/content/j183018170485723/ . arXiv admin note:
text overlap with arXiv:astro-ph/0504478 and arXiv:1003.3674 by other author
Theory of disk accretion onto supermassive black holes
Accretion onto supermassive black holes produces both the dramatic phenomena
associated with active galactic nuclei and the underwhelming displays seen in
the Galactic Center and most other nearby galaxies. I review selected aspects
of the current theoretical understanding of black hole accretion, emphasizing
the role of magnetohydrodynamic turbulence and gravitational instabilities in
driving the actual accretion and the importance of the efficacy of cooling in
determining the structure and observational appearance of the accretion flow.
Ongoing investigations into the dynamics of the plunging region, the origin of
variability in the accretion process, and the evolution of warped, twisted, or
eccentric disks are summarized.Comment: Mostly introductory review, to appear in "Supermassive black holes in
the distant Universe", ed. A.J. Barger, Kluwer Academic Publishers, in pres
Hematology and serum biochemistry values of free-ranging Iberian wolves (Canis lupus) trapped by leg-hold snares
Hematology and serum biochemistry are important tools in assessing the health and physiological status of wildlife populations. Nevertheless, studies on free-ranging wolves (Canis lupus) are scarce, and no reference values are available neither for Iberian wolves nor for wolves captured with leghold snares. We report 37 hematology and serum biochemistry variables obtained from 26 free-ranging Iberian wolves captured with leg-hold snares between 2007 and 2014, including variables previously not reported in the literature. The values obtained are similar to the published reference intervals for Scandinavian wolves captured by darting from a helicopter, except for higher values for mean corpuscular hemoglobin concentration (MCHC), red blood cell distribution width (RDW), leukocyte count, creatinine kinase (CK), ?-globulins, and total bilirubin (TBIL) and lower values for alkaline phosphatase (ALP). We propose that differences in leukocyte count, CK, and TBIL are related to the method of capture, while differences in RDW, MCHC, ALP, and ?-globulins could reflect physiological adaptations to environmental conditions, sampling, or pre-analytical artifacts. Lymphocyte count was lower and neutrophil/lymphocyte ratio was significantly higher in older, reproductive females, while ALP and phosphorus were higher in juvenile wolves. For the first time, we describe hematology and serum biochemistry values of free-ranging Iberian wolves captured with leg-hold snares. The data reported here is the first published reference for wolves captured with similar methods and for monitoring Iberian wolves populations’ physiological and health status.We thank Nuria Fandos and Carla Ferreira, rangers from Xunta de Galicia and Parque Nacional de los Picos de Europa, and volunteers who helped during the trapping sessions. The wolves were captured under projects financed by Associacao de Conservacao do Habitat do Lobo Iberico (ACHLI) in Portugal and by Picos de Europa National Park, Ministerio de Agricultura, Alimentacion y Medio Ambiente, and Xunta de Galicia in Spain. Sara Roque benefited from grant SFRH/BD/12291/2003 from Fundacao para a Ciencia e a Tecnologia. Jose V. Lopez-Bao was supported by a postdoctoral contract from the Spanish Ministry of Economy and Competitiveness. This is the paper no. 5 from the Iberian Wolf Research Team
Sterile neutrino portal to Dark Matter II: exact dark symmetry
We analyze a simple extension of the standard model (SM) with a dark sector composed of a scalar and a fermion, both singlets under the SM gauge group but charged under a dark sector symmetry group. Sterile neutrinos, which are singlets under both groups, mediate the interactions between the dark sector and the SM particles, and generate masses for the active neutrinos via the seesaw mechanism. We explore the parameter space region where the observed Dark Matter relic abundance is determined by the annihilation into sterile neutrinos, both for fermion and scalar Dark Matter particles. The scalar Dark Matter case provides an interesting alternative to the usual Higgs portal scenario. We also study the constraints from direct Dark Matter searches and the prospects for indirect detection via sterile neutrino decays to leptons, which may be able to rule out Dark Matter masses below and around 100 GeV
The use of sleep aids among Emergency Medicine residents: a web based survey
BACKGROUND: Sleepiness is a significant problem among residents due to chronic sleep deprivation. Recent studies have highlighted medical errors due to resident sleep deprivation. We hypothesized residents routinely use pharmacologic sleep aids to manage their sleep deprivation and reduce sleepiness. METHODS: A web-based survey of US allopathic Emergency Medicine (EM) residents was conducted during September 2004. All EM residency program directors were asked to invite their residents to participate. E-mail with reminders was used to solicit participation. Direct questions about use of alcohol and medications to facilitate sleep, and questions requesting details of sleep aids were included. RESULTS: Of 3,971 EM residents, 602 (16%) replied to the survey. Respondents were 71% male, 78% white, and mean (SD) age was 30 (4) years, which is similar to the entire EM resident population reported by the ACGME. There were 32% 1st year, 32% 2nd year, 28% 3rd year, and 8% 4th year residents. The Epworth Sleepiness Scale (ESS) showed 38% of residents were excessively sleepy (ESS 11–16) and 7% were severely sleepy (ESS>16). 46% (95 CI 42%–50%) regularly used alcohol, antihistamines, sleep adjuncts, benzodiazepines, or muscle relaxants to help them fall or stay asleep. Study limitations include low response and self-report. CONCLUSION: Even with a low response rate, sleep aid use among EM residents may be common. How this affects performance, well-being, and health remains unknown
- …
