2,039 research outputs found

    Matter profile effect in neutrino factory

    Get PDF
    We point out that the matter profile effect --- the effect of matter density fluctuation on the baseline --- is very important to estimate the parameters in a neutrino factory with a very long baseline. To make it clear, we propose the method of the Fourier series expansion of the matter profile. By using this method, we can take account of both the matter profile effect and its ambiguity. For very long baseline experiment, such as L=7332km, in the analysis of the oscillation phenomena we need to introduce a new parameter a1 a_{1} --- the Fourier coefficient of the matter profile --- as a theoretical parameter to deal with the matter profile effects.Comment: 21 pages, 15 figure

    Signals of R-parity violating supersymmetry in neutrino scattering at muon storage rings

    Get PDF
    Neutrino oscillation signals at muon storage rings can be faked by supersymmetric (SUSY) interactions in an R-parity violating scenario. We investigate the τ\tau-appearance signals for both long-baseline and near-site experiments, and conclude that the latter is of great use in distinguishing between oscillation and SUSY effects. On the other hand, SUSY can cause a manifold increase in the event rate for wrong-sign muons at a long-baseline setting, thereby providing us with signatures of new physics.Comment: 7 pages LaTeX, 4 ps figures, accepted for publication in Phys. Rev.

    Short-Baseline Neutrino Oscillations at a Neutrino Factory

    Full text link
    Within the framework of three-neutrino and four-neutrino scenarios that can describe the results of the LSND experiment, we consider the capabilities of short baseline neutrino oscillation experiments at a neutrino factory. We find that, when short baseline (L \alt 100 km) neutrino factory measurements are used together with other accelerator-based oscillation results, the complete three-neutrino parameter space can best be determined by measuring the rate of νeντ\nu_e \to \nu_\tau oscillations, and measuring CP violation with either νeνμ\nu_e \to \nu_\mu or νμντ\nu_\mu \to \nu_\tau oscillations (including the corresponding antineutrino channels). With measurements of CP violation in both νeνμ\nu_e \to \nu_\mu and νμντ\nu_\mu \to \nu_\tau it may be possible to distinguish between the three- and four-neutrino cases.Comment: 16 pages, Revtex (single-spaced), 8 postscript figures, uses epsf.st

    Detection of the heavy Higgs boson at γγ\gamma\gamma colliders

    Full text link
    We consider the possibility of detecting a heavy Higgs boson (mH>2mZm_H>2m_Z) in proposed γγ\gamma\gamma colliders through the semi-leptonic mode γγHZZqqˉ+\gamma\gamma \rightarrow H \rightarrow ZZ \rightarrow q\bar q \ell^+\ell^-. We show that due to the non-monochromatic nature of the photon beams produced by the laser-backscattering method, the resultant cross section for Higgs production is much smaller than the on-resonance cross section and generally {\it decreases} with increasing collider energy. Although continuum ZZZZ production is expected to be negligible, we demonstrate the presence of and calculate sizeable backgrounds from γγ+Z,qqˉZ\gamma\gamma\rightarrow \ell^+\ell^-Z,\,q\bar qZ, with Zqqˉ,+Z\rightarrow q\bar q,\,\ell^+\ell^-, respectively, and γγttˉbbˉ+ννˉ\gamma\gamma\rightarrow t\bar t\rightarrow b\bar b\ell^+\ell^-\nu\bar\nu. This channel may be used to detect a Higgs of mass mHm_H up to around 350~GeV at a 0.5~TeV e+ee^+e^- collider, assuming a nominal yearly luminosity of 10--20~fb1^{-1}.Comment: 18 pages (in RevTeX) plus Postscript figures (available by email or FAX), NUHEP-TH-92-29 and DOE-309-CPP-47. (Revised version: NO CHANGES to the manuscript, simply removed corrupted figure files

    Radion Dynamics and Phenomenology in the Linear Dilaton Model

    Full text link
    We investigate the properties of the radion in the 5D linear dilaton model arising from Little String Theory. A Goldberger-Wise type mechanism is used to stabilise a large interbrane distance, with the dilaton now playing the role of the stabilising field. We consider the coupled fluctuations of the metric and dilaton fields and identify the physical scalar modes of the system. The wavefunctions and masses of the radion and Kaluza-Klein modes are calculated, giving a radion mass of order the curvature scale. As a result of the direct coupling between the dilaton and Standard Model fields, the radion couples to the SM Lagrangian, in addition to the trace of the energy-momentum tensor. The effect of these additional interaction terms on the radion decay modes is investigated, with a notable increase in the branching fraction to photons. We also consider the effects of a non-minimal Higgs coupling to gravity, which introduces a mixing between the Higgs and radion modes. Finally, we calculate the production cross section of the radion at the LHC and use the current Higgs searches to place constraints on the parameter space.Comment: 28 pages, 7 figures; v2: error in radion-gauge boson Feynman rules corrected, version published in JHE

    Search for Top Quark FCNC Couplings in Z' Models at the LHC and CLIC

    Full text link
    The top quark is the heaviest particle to date discovered, with a mass close to the electroweak symmetry breaking scale. It is expected that the top quark would be sensitive to the new physics at the TeV scale. One of the most important aspects of the top quark physics can be the investigation of the possible anomalous couplings. Here, we study the top quark flavor changing neutral current (FCNC) couplings via the extra gauge boson Z' at the Large Hadron Collider (LHC) and the Compact Linear Collider (CLIC) energies. We calculate the total cross sections for the signal and the corresponding Standard Model (SM) background processes. For an FCNC mixing parameter x=0.2 and the sequential Z' mass of 1 TeV, we find the single top quark FCNC production cross sections 0.38(1.76) fb at the LHC with sqrt{s_{pp}}=7(14) TeV, respectively. For the resonance production of sequential Z' boson and decays to single top quark at the Compact Linear Collider (CLIC) energies, including the initial state radiation and beamstrahlung effects, we find the cross section 27.96(0.91) fb at sqrt{s_{e^{+}e^{-}}}=1(3) TeV, respectively. We make the analysis to investigate the parameter space (mixing-mass) through various Z' models. It is shown that the results benefit from the flavor tagging.Comment: 20 pages, 17 figures, 6 table

    Search for the intermediate Mass Higgs Signal at TeV eγe\gamma colliders

    Full text link
    The intermediate mass Higgs (IMH) can be abundantly produced through the process eγWHνe^-\gamma \rightarrow W^-H\nu at TeV eγe^-\gamma colliders, which are realized by the laser back-scattering method. We search for the signature of WH(jj)(bbˉ)W^-H \rightarrow (jj)(b\bar b) plus missing transverse momentum, with and without considering the bb-tagging. We also analyse all the potential backgrounds from eγWZν,WW+e,ZZe,tˉbνe^-\gamma \rightarrow W^-Z\nu,\,W^-W^+e^-,\,ZZe^-,\, \bar t b\nu and ttˉet\bar t e^-. With our selective acceptance cuts these backgrounds are reduced to a manageable level. We find that for the entire intermediate mass range 60 -- 150~GeV the Higgs discovery should be viable. We also present detail formulas for the helicity amplitudes of these processes.Comment: Latex(Revtex), 30 pages, 8 figures in postscript format (uuencoded), NUHEP-TH-93-

    Higgs Sector in Extensions of the MSSM

    Get PDF
    Extensions of the Minimal Supersymmetric Standard Model (MSSM) with additional singlet scalar fields solve the important mu-parameter fine tuning problem of the MSSM. We compute and compare the neutral Higgs boson mass spectra, including one-loop corrections, of the following MSSM extensions: Next-to-Minimal Supersymmetric Standard Model (NMSSM), the nearly-Minimal Supersymmetric Standard Model (nMSSM), and the U(1)'-extended Minimal Supersymmetric Standard Model (UMSSM) by performing scans over model parameters. We find that the Secluded U(1)'-extended Minimal Supersymmetric Standard Model (sMSSM) is identical to the nMSSM if three of the additional scalars decouple. The dominant part of the one-loop corrections are model-independent since the singlet field does not couple to MSSM particles other than the Higgs doublets. Thus, model-dependent parameters enter the masses only at tree-level. We apply constraints from LEP bounds on the Standard Model and MSSM Higgs boson masses and the MSSM chargino mass, the invisible Z decay width, and the Z-Z' mixing angle. Some extended models permit a Higgs boson with mass substantially below the SM LEP limit or above theoretical limits in the MSSM. Ways to differentiate the models via masses, couplings, decays and production of the Higgs bosons are discussed.Comment: 65 pages, 15 figures. Figure replaced and typos corrected. Version to appear in Phys. Rev.

    New Approach for Measuring Vub|V_{ub}| at Future BB-Factories

    Full text link
    It is suggested that the measurements of hadronic invariant mass (mXm_X) distributons in the inclusive BXc(u)lνB \rightarrow X_{c(u)} l \nu decays can be useful in extracting the CKM matrix element Vub|V_{ub}|. We investigated hadronic invariant mass distributions within the various theoretical models of HQET, FAC and chiral lagrangian as well as ACCMM model. It is also emphasized that the mXm_X distribution even at the region mX>mDm_{X} > m_{D} in the inclusive bub\rightarrow u are effetive in selecting the events, experimentally viable at the future asymmetric BB factories, with better theoretical understandings.Comment: 11 pages not including 1 figur
    corecore