3,610 research outputs found

    Certain minimal varieties are set-theoretic complete intersections

    Full text link
    We present a class of homogeneous ideals which are generated by monomials and binomials of degree two and are set-theoretic complete intersections. This class includes certain reducible varieties of minimal degree and, in particular, the presentation ideals of the fiber cone algebras of monomial varieties of codimension two

    Understanding the Effects of Lactose Hydrolysis Modeling on the Main Oligosaccharides in Goat Milk Whey Permeate.

    Get PDF
    Enzymatic hydrolysis of lactose is a crucial step to improve the efficiency and selectivity of membrane-based separations toward the recovery of milk oligosaccharides free from simple sugars. Response surface methodology was used to investigate the effects temperature (25.9 to 54.1 °C) and amount of enzyme (0.17 to 0.32% w/w) at 1, 2, and 4 h of reaction on the efficiency of lactose hydrolysis by Aspergillus oryzae β-galactosidase, preservation of major goat whey oligosaccharides, and on the de-novo formation of oligosaccharides. Lactose hydrolysis above 99% was achieved at 1, 2, and 4 h, not being significantly affected by temperature and amount of enzyme within the tested conditions. Formation of 4 Hexose (Hex) and 4 Hex 1 Hex and an increased de-novo formation of 2 Hex 1 N-Acetyl-Neuraminic Acid (NeuAc) and 2 Hex 1 N-Glycolylneuraminic acid (NeuGc) was observed in all treatments. Overall, processing conditions using temperatures ≤40 °C and enzyme concentration ≤0.25% resulted in higher preservation/formation of goat whey oligosaccharides

    Peptidomic and glycomic profiling of commercial dairy products: identification, quantification and potential bioactivities.

    Get PDF
    Peptidomics and glycomics are recently established disciplines enabling researchers to characterize functional characteristics of foods at a molecular level. Milk-derived bioactive peptides and oligosaccharides have garnered both scientific and commercial interest because they possess unique functional properties, such as anti-hypertensive, immunomodulatory and prebiotic activities; therefore, the objective of this work was to employ peptidomic and glycomic tools to identify and measure relative and absolute quantities of peptides and oligosaccharides in widely consumed dairy products. Specifically, we identified up to 2117 unique peptides in 10 commercial dairy products, which together represent the most comprehensive peptidomic profiling of dairy milk in the literature to date. The quantity of peptides, measured by ion-exchange chromatography, varied between 60 and 130 mg/L among the same set of dairy products, which the majority originated from caseins, and the remaining from whey proteins. A recently published bioactive peptide database was used to identify 66 unique bioactive peptides in the dataset. In addition, 24 unique oligosaccharide compositions were identified in all the samples by nano LC Chip QTOF. Neutral oligosaccharides were the most abundant class in all samples (66-91.3%), followed by acidic (8.6-33.7%), and fucosylated oligosaccharides (0-4.6%). Variation of total oligosaccharide concentration ranged from a high of 65.78 to a low of 24.82 mg/L. Importantly, characterizing bioactive peptides and oligosaccharides in a wider number of dairy products may lead to innovations that go beyond the traditional vision of dairy components used for nutritional purposes but that will rather focus on improving human health

    Profiling of aminoxyTMT-labeled bovine milk oligosaccharides reveals substantial variation in oligosaccharide abundance between dairy cattle breeds.

    Get PDF
    Free milk oligosaccharides are bioactive molecules that function as prebiotics and prevent infections that commonly afflict developing infants. To date, few publications have examined the factors affecting bovine milk oligosaccharide production among cattle in the dairy industry. Here we have applied a high-throughput isobaric labeling technique to measure oligosaccharide abundances in milk collected from Danish Holstein-Friesian and Jersey dairy cattle by liquid chromatography-mass spectrometry. With a total of 634 milk samples, this collection represents the largest sample set used for milk oligosaccharide profiling in the current literature. This study is also the first to use isobaric labeling for the purpose of measuring free oligosaccharides in a real sample set. We have identified 13 oligosaccharides that vary significantly by breed, with most structures being more abundant in the milk of Jersey cattle. The abundances of several oligosaccharides were increased in second-parity cows, and correlations between the abundances of oligosaccharide pairs were identified, potentially indicating similarities in their synthetic pathways. Fucosylated oligosaccharide structures were widely identified among both breeds. Improving our understanding of oligosaccharide production will aid in developing strategies to recover these compounds from processing streams and may enable their use as a functional ingredient in foods for infants and adults

    Predictive value of hematological and phenotypical parameters on postchemotherapy leukocyte recovery

    Get PDF
    Background: Grade IV chemotherapy toxicity is defined as absolute neutrophil count <500/μL. The nadir is considered as the lowest neutrophil number following chemotherapy, and generally is not expected before the 7th day from the start of chemotherapy. The usual prophylactic dose of rHu-G-CSF (Filgrastim) is 300 μg/day, starting 24-48 h after chemotherapy until hematological recovery. However, individual patient response is largely variable, so that rHu-G-CSF doses can be different. The aim of this study was to verify if peripheral blood automated flow cytochemistry and flow cytometry analysis may be helpful in predicting the individual response and saving rHu-G-CSF. Methods: During Grade IV neutropenia, blood counts from 30 cancer patients were analyzed daily by ADVIA 120 automated flow cytochemistry analyzer and by Facscalibur flow cytometer till the nadir. "Large unstained cells" (LUCs), myeloperoxidase index (MPXI), blasts, and various cell subpopulations in the peripheral blood were studied. At nadir rHu-G-CSF was started and 81 chemotherapy cycles were analyzed. Cycles were stratified according to their number and to two dose-levels of rHuG-CSF needed to recovery (300-600 vs. 900-1200 μg) and analyzed in relation to mean values of MPXI and mean absolute number of LUCs in the nadir phase. The linear regressions of LUCs % over time in relation to two dose-levels of rHu-G-CSF and uni-multivariate analysis of lymphocyte subpopulations, CD34+ cells, MPXI, and blasts were also performed. Results: In the nadir phase, the increase of MPXI above the upper limit of normality (>10; median 27.7), characterized a slow hematological recovery. MPXI levels were directly related to the cycle number and inversely related to the absolute number of LUCs and CD34 +/CD45+ cells. A faster hematological recovery was associated with a higher LUC increase per day (0.56% vs. 0.25%), higher blast (median 36.7/μL vs. 19.5/μL) and CD34+/CD45+ cell (median 2.2/μL vs. 0.82/μL) counts. Conclusions: Our study showed that some biological indicators such as MPXI, LUCs, blasts, and CD34 +/CD45+ cells may be of clinical relevance in predicting individual hematological response to rHu-G-CSF. Special attention should be paid when nadir MPXI exceeds the upper limit of normality because the hematological recovery may be delayed. © 2009 Clinical Cytometry Society

    Persistence of Supplemented Bifidobacterium longum subsp. infantis EVC001 in Breastfed Infants.

    Get PDF
    Attempts to alter intestinal dysbiosis via administration of probiotics have consistently shown that colonization with the administered microbes is transient. This study sought to determine whether provision of an initial course of Bifidobacterium longum subsp. infantis (B. infantis) would lead to persistent colonization of the probiotic organism in breastfed infants. Mothers intending to breastfeed were recruited and provided with lactation support. One group of mothers fed B. infantis EVC001 to their infants from day 7 to day 28 of life (n = 34), and the second group did not administer any probiotic (n = 32). Fecal samples were collected during the first 60 postnatal days in both groups. Fecal samples were assessed by 16S rRNA gene sequencing, quantitative PCR, mass spectrometry, and endotoxin measurement. B. infantis-fed infants had significantly higher populations of fecal Bifidobacteriaceae, in particular B. infantis, while EVC001 was fed, and this difference persisted more than 30 days after EVC001 supplementation ceased. Fecal milk oligosaccharides were significantly lower in B. infantis EVC001-fed infants, demonstrating higher consumption of human milk oligosaccharides by B. infantis EVC001. Concentrations of acetate and lactate were significantly higher and fecal pH was significantly lower in infants fed EVC001, demonstrating alterations in intestinal fermentation. Infants colonized by Bifidobacteriaceae at high levels had 4-fold-lower fecal endotoxin levels, consistent with observed lower levels of Gram-negative Proteobacteria and Bacteroidetes. IMPORTANCE The gut microbiome in early life plays an important role for long-term health and is shaped in large part by diet. Probiotics may contribute to improvements in health, but they have not been shown to alter the community composition of the gut microbiome. Here, we found that breastfed infants could be stably colonized at high levels by provision of B. infantis EVC001, with significant changes to the overall microbiome composition persisting more than a month later, whether the infants were born vaginally or by caesarean section. This observation is consistent with previous studies demonstrating the capacity of this subspecies to utilize human milk glycans as a nutrient and underscores the importance of pairing a probiotic organism with a specific substrate. Colonization by B. infantis EVC001 resulted in significant changes to fecal microbiome composition and was associated with improvements in fecal biochemistry. The combination of human milk and an infant-associated Bifidobacterium sp. shows, for the first time, that durable changes to the human gut microbiome are possible and are associated with improved gut function

    Mechanisms by which sialylated milk oligosaccharides impact bone biology in a gnotobiotic mouse model of infant undernutrition

    Get PDF
    Undernutrition in children is a pressing global health problem, manifested in part by impaired linear growth (stunting). Current nutritional interventions have been largely ineffective in overcoming stunting, emphasizing the need to obtain better understanding of its underlying causes. Treating Bangladeshi children with severe acute malnutrition with therapeutic foods reduced plasma levels of a biomarker of osteoclastic activity without affecting biomarkers of osteoblastic activity or improving their severe stunting. To characterize interactions among the gut microbiota, human milk oligosaccharides (HMOs), and osteoclast and osteoblast biology, young germ-free mice were colonized with cultured bacterial strains from a 6-mo-old stunted infant and fed a diet mimicking that consumed by the donor population. Adding purified bovine sialylated milk oligosaccharides (S-BMO) with structures similar to those in human milk to this diet increased femoral trabecular bone volume and cortical thickness, reduced osteoclasts and their bone marrow progenitors, and altered regulators of osteoclastogenesis and mediators of Th2 responses. Comparisons of germ-free and colonized mice revealed S-BMO-dependent and microbiota-dependent increases in cecal levels of succinate, increased numbers of small intestinal tuft cells, and evidence for activation of a succinate-induced tuft cell signaling pathway linked to Th2 immune responses. A prominent fucosylated HMO, 2'-fucosyllactose, failed to elicit these changes in bone biology, highlighting the structural specificity of the S-BMO effects. These results underscore the need to further characterize the balance between, and determinants of, osteoclastic and osteoblastic activity in stunted infants/children, and suggest that certain milk oligosaccharides may have therapeutic utility in this setting
    corecore