661 research outputs found

    Dielectric properties of multiband electron systems: I - Tight-binding formulation

    Full text link
    The screened electron-electron interaction in a multi-band electron system is calculated within the random phase approximation and in the tight-binding representation. The obtained dielectric matrix contains, beside the usual site-site correlations, also the site-bond and bond-bond correlations, and thus includes all physically relevant polarization processes. The arguments are given that the bond contributions are negligible in the long wavelength limit. We analyse the system with two non-overlapping bands in this limit, and show that the corresponding dielectric matrix reduces to a 2×22\times2 form. The intra-band and inter-band contributions are represented by diagonal matrix elements, while the off-diagonal elements contain the mixing between them. The latter is absent in insulators but may be finite in conductors. Performing the multipole expansion of the bare long-range interaction, we show that this mixing is directly related to the symmetry of the atomic orbitals participating in the tight-binding electronic states. In systems with forbidden atomic dipolar transitions, the intra-band and inter-band polarizations are separated. However, when the dipolar transitions are allowed, the off-diagonal elements of the dielectric matrix are of the same order as diagonal ones, due to a finite monopole-dipole interaction between the intra-band and inter-band charge fluctuations.Comment: 32 pages, LaTeX, to appear in Z.Phys.

    Dielectric properties of multiband electron systems: II - Collective modes

    Full text link
    Starting from the tight-binding dielectric matrix in the random phase approximation we examine the collective modes and electron-hole excitations in a two-band electronic system. For long wavelengths (q0{\bf q}\rightarrow0), for which most of the analysis is carried out, the properties of the collective modes are closely related to the symmetry of the atomic orbitals involved in the tight-binding states. In insulators there are only inter-band charge oscillations. If atomic dipolar transitions are allowed, the corresponding collective modes reduce in the asymptotic limit of vanishing bandwidths to Frenkel excitons for an atomic insulator with weak on-site interactions. The finite bandwidths renormalize the dispersion of these modes and introduce a continuum of incoherent inter-band electron-hole excitations. The possible Landau damping of collective modes due to the presence of this continuum is discussed in detail.Comment: 25 pages, LaTeX, to appear in Z.Phys.

    Theory of stripes in quasi two dimensional rare-earth tritellurides

    Full text link
    Even though the rare-earth tritellurides are tetragonal materials with a quasi two dimensional (2D) band structure, they have a "hidden" 1D character. The resultant near-perfect nesting of the Fermi surface leads to the formation of a charge density wave (CDW) state. We show that for this band structure, there are two possible ordered phases: A bidirectional "checkerboard" state would occur if the CDW transition temperature were sufficiently low, whereas a unidirectional "striped" state, consistent with what is observed in experiment, is favored when the transition temperature is higher. This result may also give some insight into why, in more strongly correlated systems, such as the cuprates and nickelates, the observed charge ordered states are generally stripes as opposed to checkerboards.Comment: Added contents and references, changed title and figures. Accepted to PR

    Single reconstructed Fermi surface pocket in an underdoped single layer cuprate superconductor

    Full text link
    The observation of a reconstructed Fermi surface via quantum oscillations in hole-doped cuprates opened a path towards identifying broken symmetry states in the pseudogap regime. However, such an identification has remained inconclusive due to the multi-frequency quantum oscillation spectra and complications accounting for bilayer effects in most studies. We overcome these impediments with high resolution measurements on the structurally simpler cuprate HgBa2CuO4+d (Hg1201), which features one CuO2 plane per unit cell. We find only a single oscillatory component with no signatures of magnetic breakdown tunneling to additional orbits. Therefore, the Fermi surface comprises a single quasi-two-dimensional pocket. Quantitative modeling of these results indicates that biaxial charge-density-wave within each CuO2 plane is responsible for the reconstruction, and rules out criss-crossed charge stripes between layers as a viable alternative in Hg1201. Lastly, we determine that the characteristic gap between reconstructed pockets is a significant fraction of the pseudogap energy

    Tunable Polaronic Conduction in Anatase TiO2

    Get PDF
    Oxygen vacancies created in anatase TiO2 by UV photons (80–130 eV) provide an effective electron-doping mechanism and induce a hitherto unobserved dispersive metallic state. Angle resolved photoemission reveals that the quasiparticles are large polarons. These results indicate that anatase can be tuned from an insulator to a polaron gas to a weakly correlated metal as a function of doping and clarify the nature of conductivity in this material.open1192sciescopu

    Nodes in the Order Parameter of Superconducting Iron Pnictides Observed by Infrared Spectroscopy

    Full text link
    The temperature and frequency dependences of the conductivity are derived from optical reflection and transmission measurements of electron doped BaFe2_2As2_2 crystals and films. The data is consistent with gap nodes or possibly a very small gap in the crossover region between these two possibilities. This can arise when one of the several pockets known to exist in these systems has extended s-wave gap symmetry with an anisotropic piece canceling or nearly so the isotropic part in some momentum direction. Alternatively, a node can be lifted by impurity scattering which reduces anisotropy. We find that the smaller gap on the hole pocket at the Γ\Gamma point in the Brillouin zone is isotropic s-wave while the electron pocket at the MM point has a larger gap which is anisotropic and falls in the crossover region.Comment: 11 pages, 3 figure

    Two Ising-like magnetic excitations in a single-layer cuprate superconductor

    Full text link
    There exists increasing evidence that the phase diagram of the high-transition temperature (Tc) cuprate superconductors is controlled by a quantum critical point. One distinct theoretical proposal is that, with decreasing hole-carrier concentration, a transition occurs to an ordered state with two circulating orbital currents per CuO2 square. Below the 'pseudogap' temperature T* (T* > Tc), the theory predicts a discrete order parameter and two weakly-dispersive magnetic excitations in structurally simple compounds that should be measurable by neutron scattering. Indeed, novel magnetic order and one such excitation were recently observed. Here, we demonstrate for tetragonal HgBa2CuO4+d the existence of a second excitation with local character, consistent with the theory. The excitations mix with conventional antiferromagnetic fluctuations, which points toward a unifying picture of magnetism in the cuprates that will likely require a multi-band description.Comment: Including supplementary informatio

    Doping-Dependent Raman Resonance in the Model High-Temperature Superconductor HgBa2CuO4+d

    Full text link
    We study the model high-temperature superconductor HgBa2CuO4+d with electronic Raman scattering and optical ellipsometry over a wide doping range. The resonant Raman condition which enhances the scattering cross section of "two-magnon" excitations is found to change strongly with doping, and it corresponds to a rearrangement of inter-band optical transitions in the 1-3 eV range seen by ellipsometry. This unexpected change of the resonance condition allows us to reconcile the apparent discrepancy between Raman and x-ray detection of magnetic fluctuations in superconducting cuprates. Intriguingly, the strongest variation occurs across the doping level where the antinodal superconducting gap reaches its maximum.Comment: 4 pages, 4 figures, contact authors for Supplemental Materia

    Optical and thermodynamic properties of the high-temperature superconductor HgBa_2CuO_4+delta

    Full text link
    In- and out-of-plane optical spectra and specific heat measurements for the single layer cuprate superconductor Hg-1201 at optimal doping (Tc = 97 K) are presented. Both the in-plane and out-of-plane superfluid density agree well with a recently proposed scaling relation rho_{s}=sigma_{dc}T_{c}. It is shown that there is a superconductivity induced increase of the in-plane low frequency spectral weight which follows the trend found in underdoped and optimally doped Bi-2212 and optimally doped Bi-2223. We observe an increase of optical spectral weight which corresponds to a change in kinetic energy of approximately 0.5 meV/Cu which is more than enough to explain the condensation energy. The specific heat anomaly is 10 times smaller than in YBCO and 3 times smaller than in Bi-2212. The shape of the anomaly is similar to the one observed in YBCO showing that the superconducting transition is governed by thermal fluctuations.Comment: 11 pages, 13 figure
    corecore