485 research outputs found

    Characterization methods dedicated to nanometer-thick hBN layers

    Full text link
    Hexagonal boron nitride (hBN) regains interest as a strategic component in graphene engineering and in van der Waals heterostructures built with two dimensional materials. It is crucial then, to handle reliable characterization techniques capable to assess the quality of structural and electronic properties of the hBN material used. We present here characterization procedures based on optical spectroscopies, namely cathodoluminescence and Raman, with the additional support of structural analysis conducted by transmission electron microscopy. We show the capability of optical spectroscopies to investigate and benchmark the optical and structural properties of various hBN thin layers sources

    Origin of the excitonic recombinations in hexagonal boron nitride by spatially resolved cathodoluminescence spectroscopy

    Full text link
    The excitonic recombinations in hexagonal boron nitride (hBN) are investigated with spatially resolved cathodoluminescence spectroscopy in the UV range. Cathodoluminescence images of an individual hBN crystallite reveals that the 215 nm free excitonic line is quite homogeneously emitted along the crystallite whereas the 220 nm and 227 nm excitonic emissions are located in specific regions of the crystallite. Transmission electron microscopy images show that these regions contain a high density of crystalline defects. This suggests that both the 220 nm and 227 nm emissions are produced by the recombination of excitons bound to structural defects

    Un algorithme de test pour la connexit\'e temporelle des graphes dynamiques de faible densit\'e

    Full text link
    We address the problem of testing whether a dynamic graph is temporally connected, i.e. a temporal path ({\em journey}) exists between all pairs of vertices. We consider a discrete version of the problem, where the topology is given as an evolving graph \G=\{G_1,G_2,...,G_{k}\} in which only the set of (directed) edges varies. Two cases are studied, depending on whether a single edge or an unlimited number of edges can be crossed in a same GiG_i (strict journeys {\it vs} non-strict journeys). For strict journeys, two existing algorithms designed for other problems can be adapted. However, we show that a dedicated approach achieves a better time complexity than one of these two algorithms in all cases, and than the other one for those graphs whose density is low at any time (though arbitrary over time). The time complexity of our algorithm is O(kμn)O(k\mu n), where k=|\G| is the number of time steps and μ=max(Ei)\mu=max(|E_i|) is the maximum {\em instant} density, to be contrasted with m=Eim=|\cup E_i|, the {\em cumulated} density. Indeed, it is not uncommon for a mobility scenario to satisfy, for instance, both μ=o(n)\mu=o(n) and m=Θ(n2)m=\Theta(n^2). We characterize the key values of k,μk, \mu and mm for which our algorithm should be used. For non-strict journeys, for which no algorithm is known, we show that a similar strategy can be used to answer the question, still in O(kμn)O(k\mu n) time

    Nanoparticles as a possible moderator for an ultracold neutron source

    Full text link
    Ultracold and very cold neutrons (UCN and VCN) interact strongly with nanoparticles due to the similarity of their wavelengths and nanoparticles sizes. We analyze the hypothesis that this interaction can provide efficient cooling of neutrons by ultracold nanoparticles at certain experimental conditions, thus increasing the density of UCN by many orders of magnitude. The present analytical and numerical description of the problem is limited to the model of independent nanoparticles at zero temperature. Constraints of application of this model are discussed

    Excitonic recombinations in hBN: from bulk to exfoliated layers

    Get PDF
    Hexagonal boron nitride (h-BN) and graphite are structurally similar but with very different properties. Their combination in graphene-based devices meets now a huge research focus, and it becomes particularly important to evaluate the role played by crystalline defects in them. In this work, the cathodoluminescence (CL) properties of hexagonal boron nitride crystallites are reported and compared to those of nanosheets mechanically exfoliated from them. First the link between the presence of structural defects and the recombination intensity of bound-excitons, the so-called D series, is confirmed. Low defective h-BN regions are further evidenced by CL spectral mapping (hyperspectral imaging), allowing us to observe new features in the near-band-edge region, tentatively attributed to phonon replica of exciton recombinations. Second the h-BN thickness was reduced down to six atomic layers, using mechanical exfoliation, as evidenced by atomic force microscopy. Even at these low thicknesses, the luminescence remains intense and exciton recombination energies are not strongly modified with respect to the bulk, as expected from theoretical calculations indicating extremely compact excitons in h-BN

    Exciton and interband optical transitions in hBN single crystal

    Get PDF
    Near band gap photoluminescence (PL) of hBN single crystal has been studied at cryogenic temperatures with synchrotron radiation excitation. The PL signal is dominated by the D-series previously assigned to excitons trapped on structural defects. A much weaker S-series of self-trapped excitons at 5.778 eV and 5.804 eV has been observed using time-window PL technique. The S-series excitation spectrum shows a strong peak at 6.02 eV, assigned to free exciton absorption. Complementary photoconductivity and PL measurements set the band gap transition energy to 6.4 eV and the Frenkel exciton binding energy larger than 380 meV

    Cathodoluminescence imaging and spectroscopy on a single multiwall boron nitride nanotube

    Get PDF
    Cathodoluminescence imaging and spectroscopy experiments on a single bamboo-like boron nitride nanotube are reported. Imaging experiments show that the luminescence is located all along the nanotube. Spectroscopy experiments point out the important role of dimensionality in this one dimensional object
    corecore