43 research outputs found
Clioquinol Inhibits Zinc-Triggered Caspase Activation in the Hippocampal CA1 Region of a Global Ischemic Gerbil Model
Background: Excessive release of chelatable zinc from excitatory synaptic vesicles is involved in the pathogenesis of selective neuronal cell death following transient forebrain ischemia. The present study was designed to examine the neuroprotective effect of a membrane-permeable zinc chelator, clioquinol (CQ), in the CA1 region of the gerbil hippocampus after transient global ischemia. Methodology/Principal Findings: The common carotid arteries were occluded bilaterally, and CQ (10 mg/kg, i.p.) was injected into gerbils once a day. The zinc chelating effect of CQ was examined with TSQ fluorescence and autometallography. Neuronal death, the expression levels of caspases and apoptosis inducing factor (AIF) were evaluated using TUNEL, in situ hybridization and Western blotting, respectively. We were able to show for the first time that CQ treatment attenuates the ischemia-induced zinc accumulation in the CA1 pyramidal neurons, accompanied by less neuronal loss in the CA1 field of the hippocampus after ischemia. Furthermore, the expression levels of caspase-3,-9, and AIF were significantly decreased in the hippocampus of CQ-treated gerbils. Conclusions/Significance: The present study indicates that the neuroprotective effect of CQ is related to downregulation o
The Essential Toxin: Impact of Zinc on Human Health
Compared to several other metal ions with similar chemical properties, zinc is relatively harmless. Only exposure to high doses has toxic effects, making acute zinc intoxication a rare event. In addition to acute intoxication, long-term, high-dose zinc supplementation interferes with the uptake of copper. Hence, many of its toxic effects are in fact due to copper deficiency. While systemic homeostasis and efficient regulatory mechanisms on the cellular level generally prevent the uptake of cytotoxic doses of exogenous zinc, endogenous zinc plays a significant role in cytotoxic events in single cells. Here, zinc influences apoptosis by acting on several molecular regulators of programmed cell death, including caspases and proteins from the Bcl and Bax families. One organ where zinc is prominently involved in cell death is the brain, and cytotoxicity in consequence of ischemia or trauma involves the accumulation of free zinc. Rather than being a toxic metal ion, zinc is an essential trace element. Whereas intoxication by excessive exposure is rare, zinc deficiency is widespread and has a detrimental impact on growth, neuronal development, and immunity, and in severe cases its consequences are lethal. Zinc deficiency caused by malnutrition and foods with low bioavailability, aging, certain diseases, or deregulated homeostasis is a far more common risk to human health than intoxication
Sex-specific genetic dissection of diabetes in a rodent model identifies <i>Ica1</i> and <i>Ndufa4</i> as major candidate genes
The aim of the study was to initiate a sex-specific investigation of the molecular basis of diabetes, using a genomic approach in the Cohen Diabetic rat model of diet-induced Type 2 diabetes. We used an F2 population resulting from a cross between Cohen Diabetic susceptible (CDs) and resistant (CDr) and consisting of 132 males and 159 females to detect relevant QTLs by linkage and cosegregation analyses. To confirm the functional relevance of the QTL, we applied the “chromosome substitution” strategy. We identified candidate genes within the quantitative trait locus (QTL) and studied their differential expression. We sequenced the differentially expressed candidate genes to account for differences in their expression. We confirmed in this new cross in males a previously detected major QTL on rat chromosome 4 (RNO4); we identified in females this major QTL as well. We found three additional diabetes-related QTLs on RNO11, 13, and 20 in females only. We pursued the investigation of the QTL on RNO4 and generated a CDs.4CDr consomic strain, which provided us with functional confirmation for the contribution of the QTL to the diabetic phenotype in both sexes. We successfully narrowed the QTL span to 2.6 cM and identified within it six candidate genes, but only two of which, Ica1 (islet cell autoantigen 1) and Ndufa4 (NADH dehydrogenase ubiquinone) were differentially expressed between CDs and CDr. We sequenced the exons and promoter regions of Ica1 and Ndufa4 but did not identify sequence variations between the strains. The detection of the QTL on RNO4 in both sexes suggests involvement of Ica1, Ndufa4, the Golgi apparatus, the mitochondria and genetic susceptibility to dietary-environmental factors in the pathophysiology of diabetes in our model. The additional sex-specific QTLs are likely to account for differences in the diabetic phenotype between the sexes. </jats:p
Narrative reconstruction therapy for prolonged grief disorder–a pilot study
Background: Prolonged grief disorder (PGD) is a chronic and disabling condition that affects approximately 10% of non-traumatically bereaved people. Narrative reconstruction (NR), originally designed for the treatment of posttraumatic stress disorder (PTSD), is a time-limited integrative therapy consisting of exposure to the loss memory, detailed written reconstruction of the loss memory narrative, and an elaboration of the personal significance of that memory for the bereaved. Objective: This pilot study examined the efficacy of NR therapy in reducing symptoms in bereaved people diagnosed with PGD. Method: Ten PGD patients participated in the study and were treated with 16 weekly sessions of NR. PGD, PTSD, and depression symptoms, as well as levels of loss integration, were assessed at pre-treatment, post-treatment, and at a 3-month follow-up. Results: Following NR, participants showed significant reductions in PGD, depression, and PTSD symptoms, and elevated levels of trauma integration. Symptoms showed further improvement at the three-month follow-up. Conclusions: These findings provide preliminary evidence for the feasibility and efficacy of NR in treating PGD. Narrative reconstruction therapy requires further evaluation in randomized controlled trials
Dynamic Tracking Algorithm for Time-Varying Neuronal Network Connectivity using Wide-Field Optical Image Video Sequences
AbstractPropagation of signals between neurons and brain regions provides information about the functional properties of neural networks, and thus information transfer. Advances in optical imaging and statistical analyses of acquired optical signals have yielded various metrics for inferring neural connectivity, and hence for mapping signal intercorrelation. However, a single coefficient is traditionally derived to classify the connection strength between two cells, ignoring the fact that neural systems are inherently time-variant systems. To overcome these limitations, we utilized a time-varying Pearson’s correlation coefficient, spike-sorting, wavelet transform, and wavelet coherence of calcium transients from DIV 12–15 hippocampal neurons from GCaMP6s mice after applying various concentrations of glutamate. Results provide a comprehensive overview of resulting firing patterns, network connectivity, signal directionality, and network properties. Together, these metrics provide a more comprehensive and robust method of analyzing transient neural signals, and enable future investigations for tracking the effects of different stimuli on network properties.</jats:p
