453 research outputs found

    Polynomiality of orbifold Hurwitz numbers, spectral curve, and a new proof of the Johnson-Pandharipande-Tseng formula

    Full text link
    In this paper we present an example of a derivation of an ELSV-type formula using the methods of topological recursion. Namely, for orbifold Hurwitz numbers we give a new proof of the spectral curve topological recursion, in the sense of Chekhov, Eynard, and Orantin, where the main new step compared to the existing proofs is a direct combinatorial proof of their quasi-polynomiality. Spectral curve topological recursion leads to a formula for the orbifold Hurwitz numbers in terms of the intersection theory of the moduli space of curves, which, in this case, appears to coincide with a special case of the Johnson-Pandharipande-Tseng formula.Comment: 23 page

    Kontsevich integral for knots and Vassiliev invariants

    Full text link
    We review quantum field theory approach to the knot theory. Using holomorphic gauge we obtain the Kontsevich integral. It is explained how to calculate Vassiliev invariants and coefficients in Kontsevich integral in a combinatorial way which can be programmed on a computer. We discuss experimental results and temporal gauge considerations which lead to representation of Vassiliev invariants in terms of arrow diagrams. Explicit examples and computational results are presented.Comment: 25 pages, 17 figure
    corecore