26,590 research outputs found
Charged branes interactions via Kalb-Ramond field
Because of its versatility, the 2-form field has been employed to describe a
multitude of scenarios that range from high energy to condensed matter physics.
Pushing forward in this endeavor we study the interaction energy, intermediated
by this kind of field, between branes in a variety of configurations. Also, the
so-called Cremmer-Scherk-Kalb-Ramond model, which consists of the
electromagnetic field coupled to the Kalb-Ramond gauge potential, is
considered. It turns out that these models exhibit a much richer class of
sources than usually thought, able to intermediate novel forms of interactions
in different scenarios.Comment: 12 latex pages, more general result
A Conducting surface in Lee-Wick electrodynamics
The Lee-Wick electrodynamics in the vicinity of a conducting plate is
investigated. The propagator for the gauge field is calculated and the
interaction between the plate and a point-like electric charge is computed. The
boundary condition imposed on the vector field is taken to be the one that
vanishes, on the plate, the normal component of the dual field strength to the
plate. It is shown that the image method is not valid in Lee-Wick
electrodynamics.Comment: 11 pages, 1 figur
Atomic Josephson vortex
We show that Josephson vortices in a quasi-1D atomic Bose Josephson junction
can be controllably manipulated by imposing a difference of chemical potentials
on the atomic BEC waveguides forming the junction. This effect, which has its
origin in the Berry phase structure of a vortex, turns out to be very robust in
the whole range of the parameters where such vortices can exist. We also
propose that a Josephson vortex can be created by the phase imprinting
technique and can be identified by a specific tangential feature in the
interference picture produced by expanding clouds released from the waveguides.Comment: 7 pages, 3 figures, revtex4, submitted to Phys. Rev. A, title and
abstract changed, old sections revised, new sections added, references adde
Observation of a New Fluxon Resonant Mechanism in Annular Josephson Tunnel Structures
A novel dynamical state has been observed in the dynamics of a perdurbed
sine-Gordon system. This resonant state, has been experimentally observed as a
singularity in the dc current voltage characteristic of an annular Josephson
tunnel junction, excited in the presence of a magnetic field. With this
respect, it can be assimilated to self-resonances known as Fiske steps.
Differently from these, however, we demonstrate, on the basis of numerical
simulations, that its detailed dynamics involves rotating fluxon pairs, a
mechanism associated, so far, to self-resonances known as zero-field steps.Comment: 4 pages, 2 figures, submitted to Physical Review Letter
Path Integral and the Induction Law
We show how the induction law is correctly used in the path integral
computation of the free particle propagator. The way this primary path integral
example is treated in most textbooks is a little bit missleading.Comment: 5 latex pages, no figure
Macroscopic quantum tunneling in "small" Josephson junctions in magnetic field
We study the phenomenon of macroscopic quantum tunneling (MQT) in small
Josephson junctions (JJ) with an externally applied magnetic field. The latter
results in the appearance of the Fraunhofer type modulation of the current
density along the barrier. The problem of MQT for a point-like JJ is reduced to
the motion of the quantum particle in the washboard potential. In the case of a
finite size JJ under consideration, this problem corresponds to a MQT in
potential which itself, besides the phase, depends on space variables. Finally,
the general expression for the crossover temperature T_0 between thermally
activated and macroscopic quantum tunneling regimes and the escaping time
tau_esc have been calculated
The Zeta Function Method and the Harmonic Oscillator Propagator
We show how the pre-exponential factor of the Feynman propagator for the
harmonic oscillator can be computed by the generalized -function method.
Besides, we establish a direct equivalence between this method and Schwinger's
propertime method.Comment: 12 latex pages, no figure
Non-Standard Time Reversal for Particle Multiplets and the Spin-Flavor Structure of Hadrons
We show that a system of quarks interacting with chiral fields provides a
physical representation of a ``non-standard'' time reversal for particle
multiplets proposed by Weinberg. As an application, we argue that, if the
internal structure of hadrons is described by a chiral lagrangian, the
so-called time-reversal-odd quark distribution functions might not be forbidden
by time-reversal invariance.Comment: 2 pages, proceedings of "The Spin Structure of the Proton", ECT -
Trento, July 2001. Eds. S Bass, A De Roeck and A Deshpand
- …
