324 research outputs found
An assessment of SEVIRI imagery at various temporal resolutions and the effect on accurate dust emission mapping
This paper evaluates the use of the ‘Dust red/green/blue (RGB)’ product derived from Spinning Enhanced Visible and Infrared Imager (SEVIRI) data at 15-min, 30-min, and 60-min temporal resolutions, for monitoring dust emissions in the Middle East. From January 2006 to December 2006, observations of dust emission point sources were recorded at each temporal resolution across the Middle East. Previous work has demonstrated that using SEVIRI data is a major improvement on other remote sensing methods for mapping dust sources in the Sahara, by enabling dust-storm observations through sequential images, back to the point of first emission. However, the highest temporal resolution available (15-min observations) produces 96 images per day, resulting in significantly higher data management requirements than data provided at 30-min and 60-min intervals. To optimize future research workflows, this paper investigates the effect of lowering the temporal resolution on the number and spatial distribution of observed dust emission events in the Middle East. The results show that the number of events observed reduced by 17% for 30-min resolution and 50% for 60-min resolution. These differences change seasonally, with the highest reduction observed in summer (34% and 64% reduction, respectively)
In vitro evaluation of human endometrial stem cell-derived osteoblast-like cells’ behavior on gelatin/collagen/bioglass nanofibers’ scaffolds
New biomimetic nanocomposite scaffold was prepared by the combination of nanofibrilar bioglass containing copper ion as the inorganic phase and gelatin/collagen as the organic phase of bone tissue. In this study for fabrication of the scaffold, freeze drying and electrospinning methods were used, and genipin was used as the cross-linking agent for increasing the mechanical properties of the scaffold. The growth and viability of human endometrial stem cell-derived osteoblast-like cells were investigated on this biomimetic scaffold. Cellular biocompatibility assays illustrated that this scaffold has more viabilities and osteoblast growths in comparison with two-dimensional culture. Copper ion increased growth of the osteoblasts on nanocomposite scaffold containing nanofibrous bioglass. Thus, the results obtained from this study indicate that the prepared scaffold is suitable for osteoblast growth and attachment; thus, potentially, this nanocomposite scaffold is an appropriate scaffold for bone tissue engineering. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2210–2219, 2016
Apoptosis/necrosis induction by ultraviolet, in ER positive and ER negative breast cancer cell lines
Background: Ultraviolet (UV) light exposure has been one of the major inducers of apoptosis. UV exposure has caused pyrimidine dimers and DNA fragmentation which might lead to cell cycle arrest and apoptosis signals activation. UV induced apoptosis has investigated in MDA-MB 468 as an ER negative breast adenocarcinoma and MCF-7 as an ER positive breast cancer cell line. Apoptosis induction rate by UV might be different in these two types of cells due to different biological characteristics of the cell. Objectives: In this paper we have evaluated serial dose of UV-B exposure on ER positive and ER negative breast cancer cell lines and its effect on apoptosis or necrosis induction in these cells. Materials and Methods: MDA-MB468 and MCF-7 cell lines have cultured for 24 hours and UV exposure has carried out at 290 nm at dose of 154 J/m2 to 18 KJ/m2 using UV lamp. UV exposed cells have incubated in cell culture condition for 24 or 48 hours following UV exposure and the cells have stained and analyzed by flow cytometry for apoptosis evaluation by Annexin V/PI method. Results: Apoptosis rate (PI and Annexin V double positive cells) after 24 hours incubation was higher in 24 hours in comparison with 48 hours incubation in both cell lines. The frequency of PI positive MDA-MB 468 cells was higher than PI and Annexin V double positive cells after 48 hours. PI positive MDA-MB 468 cells were significantly higher than MCF-7 cells in 24 hours incubation time. Conclusions: The results have shown that MDA-MB 468 cells were more sensitive to UV exposure and DNA fragmentation and necrosis pathway was dominant in these cells. © 2015, Iranian Journal of Cancer Prevention
Novel antibacterial biodegradable Fe-Mn-Ag alloys produced by mechanical alloying
Various compositions and synthesis methods of biodegradable iron-based alloys have been studied aiming for the use of temporary medical implants. However, none is focused on nano-structured alloy and on adding antibacterial property to the alloy. In this study, new Fe-30Mn-(1–3)Ag alloys were synthesized by means of mechanical alloying and assessed for their microstructure, mechanical properties, corrosion rate, antibacterial activity and cytotoxicity. Results showed that the alloy with 3 wt% Ag content displayed the highest relative density, shear strength, micro hardness and corrosion rate. However, optimum cytotoxicity and the antibacterial activity were reached by the alloy with 1 wt% Ag content. The compositional and processing effects of the alloys' properties are further discussed in this work
Optimized Selection of Stock Portfolio by using the Fuzzy Artificial Neural Networks Web Model, ARIMA & Markowitz Model in Tehran Stock Exchange
Financial issues have always been the main topics of scholars’ research. Fuzzy logic is one of the techniques that are widely used in this study in order to model the environmental uncertainty. The aim of this paper is combination of fuzzy logic and neural networks to select a basket (portfolio) of stocks. Web forecasting system based on fuzzy artificial neural networks that discovers fuzzy rules by using the past time data and predicts it, is also applied in this learning algorithm. The data of this study have been collected weekly from the Tehran Stock Exchange. Output data Simulation had been collected from the stock market base using obtained output data. This paper first deals with the study of financial markets. After that the research models were described and by using the other linear techniques such as Markowitz and ARIMA models, stock price was predicted. Then performance of the models was investigated with two population mean test (t-student) at the 95% confidence level. At the end Fuzzy artificial Neural Web network was selected as the best model for decision- makers. To perform research models and analysis of Java source code and software PASW 18 and ISP Server and also JDK3.1 were used. Finally, practical suggestions were given
The extracellular vesicles-derived from mesenchymal stromal cells: A new therapeutic option in regenerative medicine
ABSTRACT
Mesenchymal stem cells (MSCs) are adult multipotent cells that due to their ability to homing to damaged tissues and differentiate into specialized cells, are remarkable cells in the field of regenerative medicine. It's suggested that the predominant mechanism of MSCs in tissue repair might be related to their paracrine activity. The utilization of MSCs for tissue repair is initially based on the differentiation ability of these cells; however now it has been revealed that only a small fraction of the transplanted MSCs actually fuse and survive in host
tissues. Indeed, MSCs supply the microenvironment with the secretion of soluble trophic factors, survival signals and the release of extracellular vesicles (EVs) such as exosome. Also, the paracrine activity of EVs could mediate the cellular communication to induce cell-
differentiation/self-renewal. Recent findings suggest that EVs released by MSCs may also be critical in the physiological function of these cells. This review provides an overview of MSC-derived extracellular vesicles as a hopeful opportunity to advance novel cell-free therapy strategies that might prevail over the obstacles and risks associated with the use of
native or engineered stem cells. EVs are very stable; they can pass the biological barriers without rejection and can shuttle bioactive molecules from one cell to another, causing the exchange of genetic information and reprogramming of the recipient cells. Moreover, extracellular vesicles may provide therapeutic cargo for a wide range of diseases and cancer therapy.
Key Words:
Mesenchymal Stem Cells, Extracellular vesicles, Exosome, Regenerative medicine
Isolation of Gadalonium /Terbium using Extraction chromatography approach for therapeutic issues
161Tb is a promising radionuclide, which is a suitable radionuclide with favorable properties for small treatment size of cancer. NCA 161Tb can be produced by the indirect method through 160Gd(n,γ) 161Gd→161Tb nuclear reaction. To obtain the NCA radionuclides, the existence of an effective Gd/Tb separation method is critical. In this study, isolation of Tb from Gd/Tb matrix using Ln resin column based on extraction chromatography method has been carried out. Fractions eluted from the column containing Gd/Tb matrix were identified and quantified using ICP. The optimization of different experimental parameters for the effective separation of Gd/Tb, such as concentration of eluting solutions and flow rate of load and elution, was investigated. The results showed that optimum Gd/Tb isolation condition was obtained using HNO3 solution with a concentration of 0.8 and 3 N to separate gadolinium and terbium isotopes, respectively. The separation yield of Tb and Gd was obtained at 83.51 % and 81.8%, respectively
Impact of atorvastatin loaded exosome as an anti-glioblastoma carrier to induce apoptosis of U87 cancer cells in 3D culture model
Exosomes (EXOs) are naturally occurring nanosized lipid bilayers that can be efficiently used as a drug delivery system to carry small pharmaceutical, biological molecules and pass major biological barriers such as the blood-brain barrier. It was hypothesized that EXOs derived from human endometrial stem cells (hEnSCs-EXOs) can be utilized as a drug carrier to enhance tumor-targeting drugs, especially for those have low solubility and limited oral bioactivity. In this study, atorvastatin (Ato) loaded EXOs (AtoEXOs) was prepared and characterized for its physical and biological activities in tumor growth suppression of 3 D glioblastoma model. The AtoEXOs were obtained in different methods to maximize drug encapsulation efficacy. The characterization of AtoEXOs was performed for its size, stability, drug release, and in vitro anti-tumor efficacy evaluated comprising inhibition of proliferation, apoptosis induction of tumor cells. Expression of apoptotic genes by Real time PCR, Annexin V/PI, tunnel assay was studied after 72 h exposing U87 cells where encapsulated in matrigel in different concentrations of AtoEXOs (5, 10 μM). The results showed that the prepared AtoEXOs possessed diameter ranging from 30�150 nm, satisfying stability and sustainable Ato release rate. The AtoEXOs was up taken by U87 and generated significant apoptotic effects while this inhibited tumor growth of U87 cells. Altogether, produced AtoEXOs formulation due to its therapeutic efficacy has the potential to be an adaptable approach to treat glioblastoma brain tumors. © 2020 The Author
Erratum to: Differentiation Potential of Human Chorion-Derived Mesenchymal Stem Cells into Motor Neuron-Like Cells in Two- and Three-Dimensional Culture Systems (Mol Neurobiol, DOI 10.1007/s12035-015-9129-y)
Human unrestricted somatic stem cells ameliorate sepsis-related acute lung injury in mice
Background Aims: Sepsis and related disorders, especially acute lung injury (ALI), are the most challenging life-threatening diseases in the hospital intensive care unit. Complex pathophysiology, unbalanced immune condition, and high rate of mortality complicate the treatment of sepsis. Recently, cell therapy has been introduced as a promising option to recover the sepsis symptoms. The aim of this study was to investigate the therapeutic potential of human unrestricted somatic stem cells (USSCs) isolated from human umbilical cord blood in the mouse model of ALI. USSCs significantly enhanced the survival rate of mice suffering from ALI and suppressed concentrations of proinflammatory mediators TNF-α, and interleukin (IL)-6, and the level of anti-inflammatory cytokine IL-10. ALI mice injected by USSCs showed notable reduction in lung and liver injury, pulmonary edema, and hepatic enzymes, compared with the control group. These results determined the in vivo immunomodulatory effect of USSCs for recovery of immune balance and reduction of tissue injury in the mouse model of ALI. Therefore, USSCs can be a suitable therapeutic approach to manage sepsis disease through the anti-inflammatory potentia
- …
