875 research outputs found

    Soft Open Charm Production in Heavy-Ion Collisions

    Full text link
    Effects of strong longitudinal color electric fields (SCF) on the open charm production in nucleus-nucleus (A + A) collisions at 200A GeV are investigated within the framework of the HIJING-BBbar v2.0 model. A three fold increase of the effective string tension due to in medium effects in A + A collisions, results in a sizeable (60-70 percents) enhancement of the total charm production cross sections. The nuclear modification factors show a suppression at moderate transverse momentum consistent with RHIC data. At Large Hadron Collider energies the model predicts an increase of total charm production cross sections by approximately an order of magnitude.Comment: 5 pages, 3 figures, submitted to Phys. Rev. Let

    Hadron yields and spectra in Au+Au collisions at the AGS

    Full text link
    Inclusive double differential multiplicities and rapidity density distributions of hadrons are presented for 10.8 A GeV/c Au+Au collisions as measured at the AGS by the E877 collaboration. The results indicate that large amounts of stopping and collective transverse flow effects are present. The data are also compared to the results from the lighter Si+Al system.Comment: 12 pages, latex, 10 figures, submitted to Nuclear Physics A (Quark Matter 1996 Proceedings

    Anisotropic flow in 4.2A GeV/c C+Ta collisions

    Full text link
    Anisotropic flow of protons and negative pions in 4.2A GeV/c C+Ta collisions is studied using the Fourier analysis of azimuthal distributions. The protons exhibit pronounced directed flow. Directed flow of pions is positive in the entire rapidity interval and indicates that the pions are preferentially emitted in the reaction plane from the target to the projectile. The elliptic flow of protons and negative pions is close to zero. Comparison with the quark-gluon-string model (QGSM) and relativistic transport model (ART 1.0) show that they both yield a flow signature similar to the experimental data.Comment: 4 pages, 3 figures, Accepted for publication in Phys. Rev.

    New method for measuring azimuthal distributions in nucleus-nucleus collisions

    Get PDF
    The methods currently used to measure azimuthal distributions of particles in heavy ion collisions assume that all azimuthal correlations between particles result from their correlation with the reaction plane. However, other correlations exist, and it is safe to neglect them only if azimuthal anisotropies are much larger than 1/sqrt(N), with N the total number of particles emitted in the collision. This condition is not satisfied at ultrarelativistic energies. We propose a new method, based on a cumulant expansion of multiparticle azimuthal correlations, which allows to measure much smaller values of azimuthal anisotropies, down to 1/N. It is simple to implement and can be used to measure both integrated and differential flow. Furthermore, this method automatically eliminates the major systematic errors, which are due to azimuthal asymmetries in the detector acceptance.Comment: final version (misprints corrected), to be published in Phys.Rev.

    Predictions for p+Pb at 4.4A TeV to Test Initial State Nuclear Shadowing at energies available at the CERN Large Hadron Collider

    Full text link
    Collinear factorized perturbative QCD model predictions are compared for p+Pb at 4.4A TeV to test nuclear shadowing of parton distribution at the Large Hadron Collider (LHC). The nuclear modification factor (NMF), R_{pPb}(y=0,p_T<20 GeV/c) = dn_{p Pb} /(N_{coll}(b)dn_{pp}), is computed with electron-nucleus (e+A) global fit with different nuclear shadow distributions and compared to fixed Q^2 shadow ansatz used in Monte Carlo Heavy Ion Jet Interacting Generator (HIJING) type models. Due to rapid DGLAP reduction of shadowing with increasing Q^2 used in e+A global fit, our results confirm that no significant initial state suppression is expected (R_{pPb} (p_T) = 1 \pm 0.1) in the p_T range 5 to 20 GeV/ c. In contrast, the fixed Q^2 shadowing models assumed in HIJING type models predict in the above p_T range a sizable suppression, R_{pPb} (p_T) = 0.6-0.7 at mid-pseudorapidity that is similar to the color glass condensate (CGC) model predictions. For central (N_{coll} = 12) p+ Pb collisions and at forward pseudorapidity (\eta = 6) the HIJING type models predict smaller values of nuclear modification factors (R_{pPb}(p_T)) than in minimum bias events at mid-pseudorapidity (\eta = 0). Observation of R_{pPb}(p_T= 5-20 GeV/c) less than 0.6 for minimum bias p+A collisions would pose a serious difficulty for separating initial from final state interactions in Pb+Pb collisions at LHC energies.Comment: Revised version accepted for publication; Phys. Rev. C, in press, 16 pages, 4 figures, text modifications, added references, new figure 4, revtex

    Baryon anomaly and strong color fields in Pb+Pb collisions at 2.76A TeV at the CERN Large Hadron Collider

    Full text link
    With the HIJING/BBbar v2.0 heavy ion event generator, we explore the phenomenological consequences of several high parton density dynamical effects predicted in central Pb+Pb collisions at the Large Hadron Collider (LHC) energies. These include (1) jet quenching due to parton energy loss (dE/dx), (2) strangeness and hyperon enhancement due to strong longitudinal color field (SCF), and (3) enhancement of baryon-to-meson ratios due to baryon-anti-baryon junctions (JJbar) loops and SCF effects. The saturation/minijet cutoff scale p0(s)and effective string tension kappa(s,A) are constrained by our previous analysis of LHC p+p data and recent data on the charged multiplicity for Pb+Pb collisions reported by the ALICE collaboration. We predict the hadron flavor dependence (mesons and baryons) of the nuclear modification factor RAA(pT)$ and emphasize the possibility that the baryon anomaly could persist at the LHC up to pT=10 GeV, well beyond the range observed in central Au+Au collisions at RHIC energies.Comment: 25 pages, 8 figures, revtex4, text modifications, added references, accepted for publication Phys. Rev. C (2011
    corecore