622 research outputs found
Adult attachment style across individuals and role-relationships: Avoidance is relationship-specific, but anxiety shows greater generalizability
A generalisability study examined the hypotheses that avoidant attachment, reflecting the representation of others, should be more relationship-specific (vary across relationships more than across individuals), while attachment anxiety, reflecting self-representation, should be more generalisable across a person’s relationships. College students responded to 6-item questionnaire measures of these variables for 5 relationships (mother, father, best same-gender friend, romantic partner or best opposite-gender friend, other close person), on 3 (N = 120) or 2 (N = 77) occasions separated by a few weeks. Results supported the hypotheses, with the person variance component being larger than the relationship-specific component for anxiety, and the opposite happening for avoidance. Anxiety therefore seems not to be as relationship-specific as previous research suggested. Possible reasons for discrepancies between the current and previous studies are discussed
ACE-ASIA - Regional climatic and atmospheric chemical effects of Asian dust and pollution
Although continental-scale plumes of Asian dust and pollution reduce the amount of solar radiation reaching the earth's surface and perturb the chemistry of the atmosphere, our ability to quantify these effects has been limited by a lack of critical observations, particularly of layers above the surface. Comprehensive surface, airborne, shipboard, and satellite measurements of Asian aerosol chemical composition, size, optical properties, and radiative impacts were performed during the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) study. Measurements within a massive Chinese dust storm at numerous widely spaced sampling locations revealed the highly complex structure of the atmosphere, in which layers of dust, urban pollution, and biomass-burning smoke may be transported long distances as distinct entities or mixed together. The data allow a first-time assessment of the regional climatic and atmospheric chemical effects of a continental-scale mixture of dust and pollution. Our results show that radiative flux reductions during such episodes are sufficient to cause regional climate change
An archaeal family-B DNA polymerase variant able to replicate past DNA damage: occurrence of replicative and translesion synthesis polymerases within the B family
A mutant of the high fidelity family-B DNA polymerase from the archaeon Thermococcus gorgonarius (Tgo-Pol), able to replicate past DNA lesions, is described. Gain of function requires replacement of the three amino acid loop region in the fingers domain of Tgo-Pol with a longer version, found naturally in eukaryotic Pol zeta (a family-B translesion synthesis polymerase). Inactivation of the 3'–5' proofreading exonuclease activity is also necessary. The resulting Tgo-Pol Z1 variant is proficient at initiating replication from base mismatches and can read through damaged bases, such as abasic sites and thymine photo-dimers. Tgo-Pol Z1 is also proficient at extending from primers that terminate opposite aberrant bases. The fidelity of Tgo-Pol Z1 is reduced, with amarked tendency tomake changes at G:C base pairs. Together, these results suggest that the loop region of the fingers domain may play a critical role in determining whether a family-B enzyme falls into the accurate genome-replicating category or is an errorprone translesion synthesis polymerase. Tgo-Pol Z1 may also be useful for amplification of damaged DNA
Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial
Background
Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
Common genetic variation in cellular transport genes and epithelial ovarian cancer (EOC) risk
Background
Defective cellular transport processes can lead to aberrant accumulation of trace elements, iron, small molecules and hormones in the cell, which in turn may promote the formation of reactive oxygen species, promoting DNA damage and aberrant expression of key regulatory cancer genes. As DNA damage and uncontrolled proliferation are hallmarks of cancer, including epithelial ovarian cancer (EOC), we hypothesized that inherited variation in the cellular transport genes contributes to EOC risk.
Methods
In total, DNA samples were obtained from 14,525 case subjects with invasive EOC and from 23,447 controls from 43 sites in the Ovarian Cancer Association Consortium (OCAC). Two hundred seventy nine SNPs, representing 131 genes, were genotyped using an Illumina Infinium iSelect BeadChip as part of the Collaborative Oncological Gene-environment Study (COGS). SNP analyses were conducted using unconditional logistic regression under a log-additive model, and the FDR q<0.2 was applied to adjust for multiple comparisons.
Results
The most significant evidence of an association for all invasive cancers combined and for the serous subtype was observed for SNP rs17216603 in the iron transporter gene HEPH (invasive: OR = 0.85, P = 0.00026; serous: OR = 0.81, P = 0.00020); this SNP was also associated with the borderline/low malignant potential (LMP) tumors (P = 0.021). Other genes significantly associated with EOC histological subtypes (p<0.05) included the UGT1A (endometrioid), SLC25A45 (mucinous), SLC39A11 (low malignant potential), and SERPINA7 (clear cell carcinoma). In addition, 1785 SNPs in six genes (HEPH, MGST1, SERPINA, SLC25A45, SLC39A11 and UGT1A) were imputed from the 1000 Genomes Project and examined for association with INV EOC in white-European subjects. The most significant imputed SNP was rs117729793 in SLC39A11 (per allele, OR = 2.55, 95% CI = 1.5-4.35, p = 5.66x10-4).
Conclusion
These results, generated on a large cohort of women, revealed associations between inherited cellular transport gene variants and risk of EOC histologic subtypes
Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer
Triple-negative breast cancer (TNBC) is a heterogeneous and clinically aggressive disease for which there is no targeted therapy. BET bromodomain inhibitors, which have shown efficacy in several models of cancer have not been evaluated in TNBC. These inhibitors displace BET bromodomain proteins such as BRD4 from chromatin by competing with their acetyl-lysine recognition modules, leading to inhibition of oncogenic transcriptional programs. Here we report the preferential sensitivity of TNBCs to BET bromodomain inhibition in vitro and in vivo, establishing a rationale for clinical investigation and further motivation to understand mechanisms of resistance. In paired cell lines selected for acquired resistance to BET inhibition from previously sensitive TNBCs, we failed to identify gatekeeper mutations, new driver events or drug pump activation. BET-resistant TNBC cells remain dependent on wild-type BRD4, which supports transcription and cell proliferation in a bromodomain-independent manner. Proteomic studies of resistant TNBC identify strong association with MED1 and hyper-phosphorylation of BRD4 attributable to decreased activity of PP2A, identified here as a principal BRD4 serine phosphatase. Together, these studies provide a rationale for BET inhibition in TNBC and present mechanism-based combination strategies to anticipate clinical drug resistance
A 120-year record of resilience to environmental change in brachiopods.
The inability of organisms to cope in changing environments poses a major threat to their survival. Rising carbon dioxide concentrations, recently exceeding 400 μatm, are rapidly warming and acidifying our oceans. Current understanding of organism responses to this environmental phenomenon is based mainly on relatively short- to medium-term laboratory and field experiments, which cannot evaluate the potential for long-term acclimation and adaptation, the processes identified as most important to confer resistance. Here, we present data from a novel approach that assesses responses over a centennial timescale showing remarkable resilience to change in a species predicted to be vulnerable. Utilising museum collections allows the assessment of how organisms have coped with past environmental change. It also provides a historical reference for future climate change responses. We evaluated a unique specimen collection of a single species of brachiopod (Calloria inconspicua) collected every decade from 1900 to 2014 from one sampling site. The majority of brachiopod shell characteristics remained unchanged over the past century. One response, however, appears to reinforce their shell by constructing narrower punctae (shell perforations) and laying down more shell. This study indicates one of the most calcium-carbonate-dependent species globally to be highly resilient to environmental change over the last 120 years and provides a new insight for how similar species might react and possibly adapt to future change
- …
