252 research outputs found

    The role of topology in electrical properties of bacteriorhodopsin and rat olfactory receptor I7

    Full text link
    We report on electrical properties of the two sensing proteins: bacteriorhodopsin and rat olfactory receptor OR-I7. As relevant transport parameters we consider the small-signal impedance spectrum and the static current-voltage characteristics. Calculations are compared with available experimental results and the model predictability is tested for future perspectives.Comment: 4 pages, 4 figure

    Acoustic force measurements on polymer-coated microbubbles in a microfluidic device

    Get PDF
    This work presents an acoustofluidic device for manipulating coated microbubbles, designed for the simultaneous use of optical and acoustical tweezers. A comprehensive characterization of the acoustic pressure in the device is presented, obtained by the synergic use of different techniques in the range of acoustic frequencies where visual observations showed aggregation of polymer-coated microbubbles. In absence of bubbles, the combined use of laser vibrometry and finite element modelling supported a non-invasive measurement of the acoustic pressure and an enhanced understanding of the system resonances. Calibrated holographic optical tweezers were used for direct measurements of the acoustic forces acting on an isolated microbubble, at low driving pressures, and to confirm the spatial distribution of the acoustic field. This allowed quantitative acoustic pressure measurements by particle tracking, using polystyrene beads, and an evaluation of the related uncertainties. This process facilitated the extension of tracking to microbubbles, which have a negative acoustophoretic contrast factor, allowing acoustic force measurements on bubbles at higher pressures than optical tweezers, highlighting four peaks in the acoustic response of the device. Results and methodologies are relevant to acoustofluidic applications requiring a precise characterization of the acoustic field and, in general, to biomedical applications with microbubbles or deformable particles

    Corrosion Resistance Evaluation of HVOF Produced Hydroxyapatite and TiO2-hydroxyapatite Coatings in Hanks' Solution

    Full text link
    Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do SulConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul: 23/200.693/2012CNPq: 305890/2010-7The electrochemical behavior of HVOF produced hydroxyapatite (HA) and 80HA-20TiO2 coatings were investigated using electrochemical techniques in natural aerated Hanks' solution in the presence and absence of bovine serum albumin (BSA) for 30 days. All samples presented open circuit potential oscillations, which were associated to the porous nature of the coating that allows the electrolyte reaches the substrate causing activation - passivation at the bottom of the pores. The polarization studies indicated that the 80HA-20TiO2 coating was the only one that showed a narrow potential passive region from around -0.4 V to 0 V in the presence and absence of BSA, indicating the beneficial influence of the addition of TiO2 to the HA coating stability. Our results indicated that BSA in Hanks' solution diminishes the stability of the metallic oxide layer present on the Ti-based alloy accelerating the degrading of hydroxyapatites coatings / substrate interface due to its chelating ability

    Influence of the Water Content on the Diffusion Coefficients of Li⁺ and Water across Naphthalenic Based Copolyimide Cation-Exchange Membranes

    Get PDF
    The transport of lithium ions in cation-exchange membranes based on sulfonated copolyimide membranes is reported. Diffusion coefficients of lithium are estimated as a function of the water content in membranes by using pulsed field gradient (PFG) NMR and electrical conductivity techniques. It is found that the lithium transport slightly decreases with the diminution of water for membranes with water content lying in the range 14 < λ < 26.5, where λ is the number of molecules of water per fixed sulfonate group. For λ < 14, the value of the diffusion coefficient of lithium experiences a sharp decay with the reduction of water in the membranes. The dependence of the diffusion of lithium on the humidity of the membranes calculated from conductivity data using Nernst–Planck type equations follows a trend similar to that observed by NMR. The possible explanation of the fact that the Haven ratio is higher than the unit is discussed. The diffusion of water estimated by 1H PFG-NMR in membranes neutralized with lithium decreases as λ decreases, but the drop is sharper in the region where the decrease of the diffusion of protons of water also undergoes considerable reduction. The diffusion of lithium ions computed by full molecular dynamics is similar to that estimated by NMR. However, for membranes with medium and low concentration of water, steady state conditions are not reached in the computations and the diffusion coefficients obtained by MD simulation techniques are overestimated. The curves depicting the variation of the diffusion coefficient of water estimated by NMR and full dynamics follow parallel trends, though the values of the diffusion coefficient in the latter case are somewhat higher. The WAXS diffractograms of fully hydrated membranes exhibit the ionomer peak at q = 2.8 nm⁻1, the peak being shifted to higher q as the water content of the membranes decreases. The diffractograms present additional peaks at higher q, common to wet and dry membranes, but the peaks are better resolved in the wet membranes. The ionomer peak is not detected in the diffractograms of dry membranes.The authors acknowledge financial support provided by the DGICYT (Dirección General de Investigación Cientifíca y Tecnológica) through Grant MAT2011-29174-C02-02

    Study of the Nanostructure Effect on Polyalkylthiophene Derivatives Films Using Impedance Spectroscopy

    Full text link
    In this paper, devices fabricated with a diode-like structure (electrode/polymer/electrode) from spin-coated and nanostructured (Langmuir-Schaefer) films of polythiophene derivatives were characterized by impedance spectroscopy and studied by theoretical fitting to reach a better understanding of the physical processes in the devices. The materials used for this research were the polyalkylthiophene (P3AT) derivatives poly(3-butylthiophene) (P3BT), poly(3-hexylthiophene) (P3HT), poly(3-octylthiophene) (P3OT) and poly(3-decylthiophene) (P3DT). Electrical measurements were performed from 1 Hz to 1 MHz (100 mV ac) while increasing the dc bias in the range from 0 to 2.5 V. The fittings of the experimental results were performed using equivalent circuits. By plotting the theoretical and experimental spectra on a single graph, it was possible to obtain information related to the film morphology, interfacial effects, resistance, capacitance and conductivity of the polymer, thereby enhancing the understanding of this particular type of device. Among the P3AT films, those grown by the Langmuir-Schaefer technique showed higher electrical conductivity, with the only exception being that of P3BT

    Grundierungen — Suche nach den “Besten unter den Besten”

    No full text
    corecore