84 research outputs found
The duration of intrauterine development influences discrimination of speech prosody in infants.
AbstractAuditory speech discrimination is essential for normal language development. Children born preterm are at greater risk of language developmental delays. Using functional near‐infrared spectroscopy at term‐equivalent age, the present study investigated early discrimination of speech prosody in 62 neonates born between week 23 and 41 of gestational age (GA). We found a significant positive correlation between GA at birth and neural discrimination of forward versus backward speech at term‐equivalent age. Cluster analysis identified a critical threshold at around week 32 of GA, pointing out the existence of subgroups. Infants born before week 32 of GA exhibited a significantly different pattern of hemodynamic response to speech stimuli compared to infants born at or after week 32 of GA. Thus, children born before the GA of 32 weeks are especially vulnerable to early speech discrimination deficits. To support their early language development, we therefore suggest a close follow‐up and additional speech and language therapy especially in the group of children born before week 32 of GA
Absence of neural speech discrimination in preterm infants at term-equivalent age
Children born preterm are at higher risk to develop language deficits. Auditory speech discrimination deficits may be early signs for language developmental problems. The present study used functional near-infrared spectroscopy to investigate neural speech discrimination in 15 preterm infants at term-equivalent age compared to 15 full term neonates. The full term group revealed a significantly greater hemodynamic response to forward compared to backward speech within the left hemisphere extending from superior temporal to inferior parietal and middle and inferior frontal areas. In contrast, the preterm group did not show differences in their hemodynamic responses during forward versus backward speech, thus, they did not discriminate speech from non-speech. Groups differed significantly in their responses to forward speech, whereas they did not differ in their responses to backward speech. The significant differences between groups point to an altered development of the functional network underlying language acquisition in preterm infants as early as in term-equivalent age
Developmental surface dyslexia and dysgraphia in a child with corpus callosum agenesis: an approach to diagnosis and treatment
We present a case study detailing cognitive performance, functional neuroimaging, and effects of a hypothesis-driven treatment in a 10-year-old girl diagnosed with complete, isolated corpus callosum agenesis. Despite having average overall intellectual abilities, the girl exhibited profound surface dyslexia and dysgraphia. Spelling treatment significantly and persistently improved her spelling of trained irregular words, and this improvement generalized to reading accuracy and speed of trained words. Diffusion weighted imaging revealed strengthened intrahemispheric white matter connectivity of the left temporal cortex after treatment and identified interhemispheric connectivity between the occipital lobes, likely facilitated by a pathway crossing the midline via the posterior commissure. This case underlines the corpus callosum's critical role in lexical reading and writing. It demonstrates that spelling treatment may enhance interhemispheric connectivity in corpus callosum agenesis through alternative pathways, boosting the development of a more efficient functional organization of the visual word form area within the left temporo-occipital cortex
Living in a box: Understanding acoustic parameters in the NICU environment
BackgroundIn the last years, a significant body of scientific literature was dedicated to the noisy environment preterm-born infants experience during their admission to Neonatal Intensive Care Units (NICUs). Nonetheless, specific data on sound characteristics within and outside the incubator are missing. Therefore, this study aimed to shed light on noise level and sound characteristics within the incubator, considering the following domain: environmental noise, incubator handling, and respiratory support.MethodsThe study was performed at the Pediatric Simulation Center at the Medical University of Vienna. Evaluation of noise levels inside and outside the incubator was performed using current signal analysis libraries and toolboxes, and differences between dBA and dBSPL values for the same acoustic noises were investigated. Noise level results were furthermore classed within previously reported sound levels derived from a literature survey. In addition, sound characteristics were evaluated by means of more than 70 temporal, spectral, and modulatory timbre features.ResultsOur results show high noise levels related to various real-life situations within the NICU environment. Differences have been observed between A weighted (dBA) and unweighted (dBSPL) values for the same acoustic stimulus. Sonically, the incubator showed a dampening effect on sounds (less high frequency components, less brightness/sharpness, less roughness, and noisiness). However, a strong tonal booming component was noticeable, caused by the resonance inside the incubator cavity. Measurements and a numerical model identified a resonance of the incubator at 97 Hz and a reinforcement of the sound components in this range of up to 28 dB.ConclusionSound characteristics, the strong low-frequency incubator resonance, and levels in dBSPL should be at the forefront of both the development and promotion of incubators when helping to preserve the hearing of premature infants
Cortical thickness in the right medial frontal gyrus predicts planning performance in healthy children and adolescents
The ability to plan is an important part of the set of the cognitive skills called “executive functions.” To be able to plan actions in advance is of great importance in everyday life and constitutes one of the major key features for academic as well as economic success. The present study aimed to investigate the neuroanatomical correlates of planning in normally developing children, as measured by the cortical thickness of the prefrontal cortex. Eighteen healthy children and adolescents underwent structural MRI examinations and the Tower of London (ToL) task. A multiple regression analysis revealed that the cortical thickness of the right caudal middle frontal gyrus (cMFG) was a significant predictor of planning performance. Neither the cortical thickness of any other prefrontal area nor gender were significantly associated with performance in the ToL task. The results of the present exploratory study suggest that the cortical thickness of the right, but not the left cMFG, is positively correlated with performance in the ToL task. We, therefore, conclude that increased cortical thickness may be more beneficial for higher-order processes, such as information integration, than for lower-order processes, such as the analysis of external information
Language Mapping With Magnetoencephalography: An Update on the Current State of Clinical Research and Practice With Considerations for Clinical Practice Guidelines
Numerous studies have shown that language processing is not limited to a few brain areas. Visual or auditory stimuli activate corresponding cortical areas, then memory identifies the word or image, Wernicke\u27s and Broca\u27s areas support the processing for either reading/listening or speaking and many areas of the brain are recruited. Determining how a normal person processes language helps clinicians and scientist to understand how brain pathologies such as tumor or stroke can affect changes in language processing. Patients with epilepsy may develop atypical language organization. Over time, the chronic nature of epileptic activity, or changes from a tumor or stroke, can result in a shift of language processing area from the left to the right hemisphere, or re-routing of language pathways from traditional to non-traditional areas within the dominant left hemisphere. It is important to determine where these language areas are prior to brain surgery. MEG evoked responses reflecting cerebral activation of receptive and expressive language processing can be localized using several different techniques: Single equivalent current dipole, current distribution techniques or beamformer techniques. Over the past 20 years there have been at least 25 validated MEG studies that indicate MEG can be used to determine the dominant hemisphere for language processing. The use of MEG neuroimaging techniques is needed to reliably predict altered language networks in patients and to provide identification of language eloquent cortices for localization and lateralization necessary for clinical care
Electrophysiological assessment methodology of sensory processing dysfunction in schizophrenia and dementia of the Alzheimer type
Schizophrenia and Alzheimer’s disease impacts on various sensory processings are extensively reviewed in the present publication. This article describes aspects of a research project whose aim is to delineate the neurobiology that may underlie Social Withdrawal in Alzheimer’s disease, Schizophrenia and Major Depression. This is a European-funded IMI 2 project, identified as PRISM (Psychiatric Ratings using Intermediate Stratified Markers). This paper focuses specifically on the selected electrophysiological paradigms chosen based on a comprehensive review of all relevant literature and practical constraints. The choice of the electrophysiological biomarkers were fundamentality based their metrics and capacity to discriminate between populations. The selected electrophysiological paradigms are resting state EEG, auditory mismatch negativity, auditory and visual based oddball paradigms, facial emotion processing ERP’s and auditory steady-state response. The primary objective is to study the effect of social withdrawal on various biomarkers and endophenotypes found altered in the target populations. This has never been studied in relationship to social withdrawal, an important component of CNS diseases
Recommended from our members
Fetal temporal sulcus depth asymmetry has prognostic value for language development
- …
