26,635 research outputs found

    Local and Global Casimir Energies for a Semitransparent Cylindrical Shell

    Get PDF
    The local Casimir energy density and the global Casimir energy for a massless scalar field associated with a λδ\lambda\delta-function potential in a 3+1 dimensional circular cylindrical geometry are considered. The global energy is examined for both weak and strong coupling, the latter being the well-studied Dirichlet cylinder case. For weak-coupling,through O(λ2)\mathcal{O}(\lambda^2), the total energy is shown to vanish by both analytic and numerical arguments, based both on Green's-function and zeta-function techniques. Divergences occurring in the calculation are shown to be absorbable by renormalization of physical parameters of the model. The global energy may be obtained by integrating the local energy density only when the latter is supplemented by an energy term residing precisely on the surface of the cylinder. The latter is identified as the integrated local energy density of the cylindrical shell when the latter is physically expanded to have finite thickness. Inside and outside the delta-function shell, the local energy density diverges as the surface of the shell is approached; the divergence is weakest when the conformal stress tensor is used to define the energy density. A real global divergence first occurs in O(λ3)\mathcal{O}(\lambda^3), as anticipated, but the proof is supplied here for the first time; this divergence is entirely associated with the surface energy, and does {\em not} reflect divergences in the local energy density as the surface is approached.Comment: 28 pages, REVTeX, no figures. Appendix added on perturbative divergence

    Nucleon-Nucleon Interactions from Dispersion Relations: Coupled Partial Waves

    Full text link
    We consider nucleon-nucleon interactions from chiral effective field theory applying the N/D method. The case of coupled partial waves is now treated, extending Ref. [1] where the uncoupled case was studied. As a result three N/D elastic-like equations have to be solved for every set of three independent partial waves coupled. As in the previous reference the input for this method is the discontinuity along the left-hand cut of the nucleon-nucleon partial wave amplitudes. It can be calculated perturbatively in chiral perturbation theory because it involves only irreducible two-nucleon intermediate states. We apply here our method to the leading order result consisting of one-pion exchange as the source for the discontinuity along the left-hand cut. The linear integral equations for the N/D method must be solved in the presence of L - 1 constraints, with L the orbital angular momentum, in order to satisfy the proper threshold behavior for L>= 2. We dedicate special attention to satisfy the requirements of unitarity in coupled channels. We also focus on the specific issue of the deuteron pole position in the 3S1-3D1 scattering. Our final amplitudes are based on dispersion relations and chiral effective field theory, being independent of any explicit regulator. They are amenable to a systematic improvement order by order in the chiral expansion.Comment: 11 pages. Extends the work of uncoupled partial waves of M. Albaladejo and J. A. Oller, Phys. Rev. C 84, 054009 (2011) to the case of coupled partial waves. This version matches the published version. Discussion about the deuteron enlarged. Some references adde

    Relic Abundances and the Boltzmann Equation

    Get PDF
    I discuss the validity of the quantum Boltzmann equation for the calculation of WIMP relic densities.Comment: 5 pages, no figures; talk given at Dark Matter 2000; an important reference is added in the revised versio

    Recognition of abasic sites and single base bulges in DNA by a metalloinsertor

    Get PDF
    Abasic sites and single base bulges are thermodynamically destabilizing DNA defects that can lead to cancerous transformations if left unrepaired by the cell. Here we discuss the binding properties with abasic sites and single base bulges of Rh(bpy)_2(chrysi)^(3+), a complex previously shown to bind thermodynamically destabilized mismatch sites via metalloinsertion. Photocleavage experiments show that Rh(bpy)_2(chrysi)^(3+) selectively binds abasic sites with affinities of 1−4 × 10^6 M^(−1); specific binding is independent of unpaired base identity but is somewhat contingent on sequence context. Single base bulges are also selectively bound and cleaved, but in this case, the association constants are significantly lower (~10^5 M^(−1)), and the binding is dependent on both unpaired base identity and bulge sequence context. A wide variety of evidence, including strand scission asymmetry, binding enantiospecificity, and MALDI-TOF cleavage fragment analysis, suggests that Rh(bpy)_2(chrysi)^(3+) binds abasic sites, like mismatches, through insertion of the bulky chrysi ligand into the base pair stack from the minor groove side and ejection of the unpaired base. At single base bulge sites, a similar, though not identical, metalloinsertion mode is suggested. The recognition of abasic sites and single base bulges with bulky metalloinsertors holds promise for diagnostic and therapeutic applications

    Modal Analysis of a Two-Parachute System

    Get PDF
    The Orion capsule is designed to land under a nominal configuration of three main parachutes; however, the system is required to be fault tolerant and land successfully if one of the main parachutes fails to open. The Capsule Parachute Assembly System (CPAS) Team performed a series of drop tests in order to characterize the performance of the system with two main parachutes. During the series of drop tests, several distinct dynamical modes were observed. The most consequential of these is the pendulum mode. Three other modes are benign: flyout (scissors), maypole, and breathing. The actual multi-body system is nonlinear, flexible, and possesses significant cross-coupling. Rather than perform analysis of this highly complex system directly, we conduct analysis of each dynamical mode observed during flight, based on first principles. This approach is analogous to traditional aircraft flight dynamics analysis in which the full nonlinear behavior of the airframe is decomposed into longitudinal dynamics (phugoid and short-period modes) and lateral dynamics (spiral, roll-subsidence, and dutch-roll modes). This analysis is intended to supplement multi-body nonlinear simulations in order to provide further insight into the system

    Unitarity and the color confinement

    Full text link
    We discuss how confinement property of QCD results in the rational unitarization scheme and how unitarity saturation leads to appearance of a hadron liquid phase at very high temperatures.Comment: 10 pages, no figire

    The heat kernel coefficients for the dielectric cylinder

    Full text link
    We calculate the \hkks for the \elm field in the background of a dielectric cylinder with non equal speeds of light inside and outside. The coefficient a2a_{2} whose vanishing makes the vacuum energy of a massless field unique, turns out to be zero in dilute order, i.e., in order (\ep-1)^{2}, and nonzero beyond. As a consequence, the vanishing of the vacuum energy in the presence of a dielectric cylinder found by Casimir-Polder summation must take place irrespectively of the methods by which it might be calculated.Comment: 14 pages, 1 figur

    Surface Divergences and Boundary Energies in the Casimir Effect

    Full text link
    Although Casimir, or quantum vacuum, forces between distinct bodies, or self-stresses of individual bodies, have been calculated by a variety of different methods since 1948, they have always been plagued by divergences. Some of these divergences are associated with the volume, and so may be more or less unambiguously removed, while other divergences are associated with the surface. The interpretation of these has been quite controversial. Particularly mysterious is the contradiction between finite total self-energies and surface divergences in the local energy density. In this paper we clarify the role of surface divergences.Comment: 8 pages, 1 figure, submitted to proceedings of QFEXT0

    Reconsidering the quantization of electrodynamics with boundary conditions and some measurable consequences

    Full text link
    We show that the commonly known conductor boundary conditions E=B=0E_{||}=B_\perp=0 can be realized in two ways which we call 'thick' and 'thin' conductor. The 'thick' conductor is the commonly known approach and includes a Neumann condition on the normal component EE_\perp of the electric field whereas for a 'thin' conductor EE_\perp remains without boundary condition. Both types describe different physics already on the classical level where a 'thin' conductor allows for an interaction between the normal components of currents on both sides. On quantum level different forces between a conductor and a single electron or a neutral atom result. For instance, the Casimir-Polder force for a 'thin' conductor is by about 13% smaller than for a 'thick' one.Comment: 22 pages, basic statement weakened, conclusions changed, misprints correcte
    corecore