26,635 research outputs found
Local and Global Casimir Energies for a Semitransparent Cylindrical Shell
The local Casimir energy density and the global Casimir energy for a massless
scalar field associated with a -function potential in a 3+1
dimensional circular cylindrical geometry are considered. The global energy is
examined for both weak and strong coupling, the latter being the well-studied
Dirichlet cylinder case. For weak-coupling,through ,
the total energy is shown to vanish by both analytic and numerical arguments,
based both on Green's-function and zeta-function techniques. Divergences
occurring in the calculation are shown to be absorbable by renormalization of
physical parameters of the model. The global energy may be obtained by
integrating the local energy density only when the latter is supplemented by an
energy term residing precisely on the surface of the cylinder. The latter is
identified as the integrated local energy density of the cylindrical shell when
the latter is physically expanded to have finite thickness. Inside and outside
the delta-function shell, the local energy density diverges as the surface of
the shell is approached; the divergence is weakest when the conformal stress
tensor is used to define the energy density. A real global divergence first
occurs in , as anticipated, but the proof is supplied
here for the first time; this divergence is entirely associated with the
surface energy, and does {\em not} reflect divergences in the local energy
density as the surface is approached.Comment: 28 pages, REVTeX, no figures. Appendix added on perturbative
divergence
Nucleon-Nucleon Interactions from Dispersion Relations: Coupled Partial Waves
We consider nucleon-nucleon interactions from chiral effective field theory
applying the N/D method. The case of coupled partial waves is now treated,
extending Ref. [1] where the uncoupled case was studied. As a result three N/D
elastic-like equations have to be solved for every set of three independent
partial waves coupled. As in the previous reference the input for this method
is the discontinuity along the left-hand cut of the nucleon-nucleon partial
wave amplitudes. It can be calculated perturbatively in chiral perturbation
theory because it involves only irreducible two-nucleon intermediate states. We
apply here our method to the leading order result consisting of one-pion
exchange as the source for the discontinuity along the left-hand cut. The
linear integral equations for the N/D method must be solved in the presence of
L - 1 constraints, with L the orbital angular momentum, in order to satisfy the
proper threshold behavior for L>= 2. We dedicate special attention to satisfy
the requirements of unitarity in coupled channels. We also focus on the
specific issue of the deuteron pole position in the 3S1-3D1 scattering. Our
final amplitudes are based on dispersion relations and chiral effective field
theory, being independent of any explicit regulator. They are amenable to a
systematic improvement order by order in the chiral expansion.Comment: 11 pages. Extends the work of uncoupled partial waves of M.
Albaladejo and J. A. Oller, Phys. Rev. C 84, 054009 (2011) to the case of
coupled partial waves. This version matches the published version. Discussion
about the deuteron enlarged. Some references adde
Relic Abundances and the Boltzmann Equation
I discuss the validity of the quantum Boltzmann equation for the calculation
of WIMP relic densities.Comment: 5 pages, no figures; talk given at Dark Matter 2000; an important
reference is added in the revised versio
Recognition of abasic sites and single base bulges in DNA by a metalloinsertor
Abasic sites and single base bulges are thermodynamically destabilizing DNA defects that can lead to cancerous transformations if left unrepaired by the cell. Here we discuss the binding properties with abasic sites and single base bulges of Rh(bpy)_2(chrysi)^(3+), a complex previously shown to bind thermodynamically destabilized mismatch sites via metalloinsertion. Photocleavage experiments show that Rh(bpy)_2(chrysi)^(3+) selectively binds abasic sites with affinities of 1−4 × 10^6 M^(−1); specific binding is independent of unpaired base identity but is somewhat contingent on sequence context. Single base bulges are also selectively bound and cleaved, but in this case, the association constants are significantly lower (~10^5 M^(−1)), and the binding is dependent on both unpaired base identity and bulge sequence context. A wide variety of evidence, including strand scission asymmetry, binding enantiospecificity, and MALDI-TOF cleavage fragment analysis, suggests that Rh(bpy)_2(chrysi)^(3+) binds abasic sites, like mismatches, through insertion of the bulky chrysi ligand into the base pair stack from the minor groove side and ejection of the unpaired base. At single base bulge sites, a similar, though not identical, metalloinsertion mode is suggested. The recognition of abasic sites and single base bulges with bulky metalloinsertors holds promise for diagnostic and therapeutic applications
Modal Analysis of a Two-Parachute System
The Orion capsule is designed to land under a nominal configuration of three main parachutes; however, the system is required to be fault tolerant and land successfully if one of the main parachutes fails to open. The Capsule Parachute Assembly System (CPAS) Team performed a series of drop tests in order to characterize the performance of the system with two main parachutes. During the series of drop tests, several distinct dynamical modes were observed. The most consequential of these is the pendulum mode. Three other modes are benign: flyout (scissors), maypole, and breathing. The actual multi-body system is nonlinear, flexible, and possesses significant cross-coupling. Rather than perform analysis of this highly complex system directly, we conduct analysis of each dynamical mode observed during flight, based on first principles. This approach is analogous to traditional aircraft flight dynamics analysis in which the full nonlinear behavior of the airframe is decomposed into longitudinal dynamics (phugoid and short-period modes) and lateral dynamics (spiral, roll-subsidence, and dutch-roll modes). This analysis is intended to supplement multi-body nonlinear simulations in order to provide further insight into the system
Unitarity and the color confinement
We discuss how confinement property of QCD results in the rational
unitarization scheme and how unitarity saturation leads to appearance of a
hadron liquid phase at very high temperatures.Comment: 10 pages, no figire
The heat kernel coefficients for the dielectric cylinder
We calculate the \hkks for the \elm field in the background of a dielectric
cylinder with non equal speeds of light inside and outside. The coefficient
whose vanishing makes the vacuum energy of a massless field unique,
turns out to be zero in dilute order, i.e., in order (\ep-1)^{2}, and nonzero
beyond. As a consequence, the vanishing of the vacuum energy in the presence of
a dielectric cylinder found by Casimir-Polder summation must take place
irrespectively of the methods by which it might be calculated.Comment: 14 pages, 1 figur
Surface Divergences and Boundary Energies in the Casimir Effect
Although Casimir, or quantum vacuum, forces between distinct bodies, or
self-stresses of individual bodies, have been calculated by a variety of
different methods since 1948, they have always been plagued by divergences.
Some of these divergences are associated with the volume, and so may be more or
less unambiguously removed, while other divergences are associated with the
surface. The interpretation of these has been quite controversial. Particularly
mysterious is the contradiction between finite total self-energies and surface
divergences in the local energy density. In this paper we clarify the role of
surface divergences.Comment: 8 pages, 1 figure, submitted to proceedings of QFEXT0
Reconsidering the quantization of electrodynamics with boundary conditions and some measurable consequences
We show that the commonly known conductor boundary conditions
can be realized in two ways which we call 'thick' and 'thin'
conductor. The 'thick' conductor is the commonly known approach and includes a
Neumann condition on the normal component of the electric field
whereas for a 'thin' conductor remains without boundary condition.
Both types describe different physics already on the classical level where a
'thin' conductor allows for an interaction between the normal components of
currents on both sides. On quantum level different forces between a conductor
and a single electron or a neutral atom result. For instance, the
Casimir-Polder force for a 'thin' conductor is by about 13% smaller than for a
'thick' one.Comment: 22 pages, basic statement weakened, conclusions changed, misprints
correcte
- …
