13,788 research outputs found

    Scalar and Tensor Force Contribution to the Nucleon-Nucleon Interaction Within a Chiral Constituent Quark Model

    Get PDF
    The nucleon-nucleon problem is studied as a six-quark system in a nonrelativistic chiral constituent quark model where the Hamiltonian contains a linear confinement and a pseudoscalar meson (Goldstone boson) exchange interaction between the quarks. This hyperfine interaction has a long-range Yukawa-type part, depending on the mass of the exchanged meson and a short-range part, mainly responsible for the good description of the baryon spectra.Comment: 6 pages (LaTeX with aip-6s.clo, aipproc.cls and aipxfm.sty packages), 2 eps figures. Presented at the II International Workshop on Hadron Physics, 25-29 September, 2002, Coimbra, Portuga

    List and Probabilistic Unique Decoding of Folded Subspace Codes

    Full text link
    A new class of folded subspace codes for noncoherent network coding is presented. The codes can correct insertions and deletions beyond the unique decoding radius for any code rate R[0,1]R\in[0,1]. An efficient interpolation-based decoding algorithm for this code construction is given which allows to correct insertions and deletions up to the normalized radius s(1((1/h+h)/(hs+1))R)s(1-((1/h+h)/(h-s+1))R), where hh is the folding parameter and shs\leq h is a decoding parameter. The algorithm serves as a list decoder or as a probabilistic unique decoder that outputs a unique solution with high probability. An upper bound on the average list size of (folded) subspace codes and on the decoding failure probability is derived. A major benefit of the decoding scheme is that it enables probabilistic unique decoding up to the list decoding radius.Comment: 6 pages, 1 figure, accepted for ISIT 201

    On Decoding Schemes for the MDPC-McEliece Cryptosystem

    Get PDF
    Recently, it has been shown how McEliece public-key cryptosystems based on moderate-density parity-check (MDPC) codes allow for very compact keys compared to variants based on other code families. In this paper, classical (iterative) decoding schemes for MPDC codes are considered. The algorithms are analyzed with respect to their error-correction capability as well as their resilience against a recently proposed reaction-based key-recovery attack on a variant of the MDPC-McEliece cryptosystem by Guo, Johansson and Stankovski (GJS). New message-passing decoding algorithms are presented and analyzed. Two proposed decoding algorithms have an improved error-correction performance compared to existing hard-decision decoding schemes and are resilient against the GJS reaction-based attack for an appropriate choice of the algorithm's parameters. Finally, a modified belief propagation decoding algorithm that is resilient against the GJS reaction-based attack is presented

    Nucleon-Nucleon interaction in a chiral constituent quark model

    Get PDF
    We study the nucleon-nucleon (NN) problem as a six-quark system in a nonrelativistic chiral constituent quark model where the Hamiltonian contains a linear confinement and a pseudoscalar meson (Goldstone boson) exchange interaction between the quarks. This interaction has a long range Yukawa-type part, depending on the mass of the exchanged meson and a short range part, mainly responsible for the good description of the baryon spectra. We calculate the NN potential in the adiabatic approximation as a function of Z, the separation distance between the centres of the two three-quark clusters. The orbital part of the six-quark states is constructed either from the usual cluster model states or from molecular orbital single particle states. The latter are more realistic, having proper axially and reflectionally symmetries. In both cases the potential presents an important hard core at short distances, explained through the dominance of the [51]{FS} configuration. However in the molecular orbital basis the core is less repulsive, as a consequence of the fact that this basis gives a better upper bound for the energy of the six-quark system. We calculate the potential for the 3S1 and 3S0 channels with two different parametrizations. We find a small (few MeV) attractive pocket for one of these parametrizations. A middle range attraction is simulated by the addition of a sigma-meson exchange interaction between quarks, of a form similar to that of the pseudoscalar meson exchange. The present study is an intermediate, useful step towards dynamical calculations based on the resonating group method.Comment: 12 pages, 3 eps figures (with aipproc.sty). Talk presented by D. Bartz at the International Workshop on Hadron Physics "Effective Theories of Low Energy QCD", Coimbra, Portugal, September 10-15, 199

    Optimal pricing for optimal transport

    Full text link
    Suppose that c(x,y)c(x,y) is the cost of transporting a unit of mass from xXx\in X to yYy\in Y and suppose that a mass distribution μ\mu on XX is transported optimally (so that the total cost of transportation is minimal) to the mass distribution ν\nu on YY. Then, roughly speaking, the Kantorovich duality theorem asserts that there is a price f(x)f(x) for a unit of mass sold (say by the producer to the distributor) at xx and a price g(y)g(y) for a unit of mass sold (say by the distributor to the end consumer) at yy such that for any xXx\in X and yYy\in Y, the price difference g(y)f(x)g(y)-f(x) is not greater than the cost of transportation c(x,y)c(x,y) and such that there is equality g(y)f(x)=c(x,y)g(y)-f(x)=c(x,y) if indeed a nonzero mass was transported (via the optimal transportation plan) from xx to yy. We consider the following optimal pricing problem: suppose that a new pricing policy is to be determined while keeping a part of the optimal transportation plan fixed and, in addition, some prices at the sources of this part are also kept fixed. From the producers' side, what would then be the highest compatible pricing policy possible? From the consumers' side, what would then be the lowest compatible pricing policy possible? In the framework of cc-convexity theory, we have recently introduced and studied optimal cc-convex cc-antiderivatives and explicit constructions of these optimizers were presented. In the present paper we employ optimal cc-convex cc-antiderivatives and conclude that these are natural solutions to the optimal pricing problems mentioned above. This type of problems drew attention in the past and existence results were previously established in the case where X=Y=RnX=Y=R^n under various specifications. We solve the above problem for general spaces X,YX,Y and real-valued, lower semicontinuous cost functions cc

    Important configurations for NN processes in a Goldstone boson exchange model

    Get PDF
    We study the short-range nucleon-nucleon interaction in a nonrelativistic chiral constituent quark model by diagonalizing a Hamiltonian containing a linear confinement and a Goldstone boson exchange interaction between quarks. A finite six-quark basis obtained from single particle cluster model states was previously used. Here we show that the configurations which appear naturally through the use of molecular orbitals, instead of cluster model states, are more efficient in lowering the six-quark energy.Comment: 17 pages, RevTe

    Three-Field Potential for Soft-Wall AdS/QCD

    Full text link
    The AdS/CFT correspondence may offer new and useful insights into the non-perturbative regime of strongly coupled gauge theories such as Quantum Chromodynamics. Soft-wall AdS/QCD models have reproduced the linear trajectories of meson spectra by including background dilaton and chiral condensate fields. Efforts to derive these background fields from a scalar potential have so far been unsuccessful in satisfying the UV boundary conditions set by the AdS/CFT dictionary while reproducing the IR behavior needed to obtain the correct chiral symmetry breaking and meson spectra. We present a three-field scalar parametrization that includes the dilaton field and the chiral and glueball condensates. This model is consistent with linear trajectories for the meson spectra and the correct mass-splitting between the vector and axial-vector mesons. We also present the resulting meson trajectories.Comment: 6 pages, 2 figures, Presented at The 7th International Workshop on Chiral Dynamics, August 6 -10, 2012, Jefferson Lab, Newport News, Virginia, US

    SEE: Towards Semi-Supervised End-to-End Scene Text Recognition

    Full text link
    Detecting and recognizing text in natural scene images is a challenging, yet not completely solved task. In recent years several new systems that try to solve at least one of the two sub-tasks (text detection and text recognition) have been proposed. In this paper we present SEE, a step towards semi-supervised neural networks for scene text detection and recognition, that can be optimized end-to-end. Most existing works consist of multiple deep neural networks and several pre-processing steps. In contrast to this, we propose to use a single deep neural network, that learns to detect and recognize text from natural images, in a semi-supervised way. SEE is a network that integrates and jointly learns a spatial transformer network, which can learn to detect text regions in an image, and a text recognition network that takes the identified text regions and recognizes their textual content. We introduce the idea behind our novel approach and show its feasibility, by performing a range of experiments on standard benchmark datasets, where we achieve competitive results.Comment: AAAI-18. arXiv admin note: substantial text overlap with arXiv:1707.0883
    corecore