112 research outputs found

    Constructive Theory of Banach algebras

    Get PDF
    We present a way to organize a constructive development of the theory of Banach algebras, inspired by works of Cohen, de Bruijn and Bishop. We illustrate this by giving elementary proofs of Wiener's result on the inverse of Fourier series and Wiener's Tauberian Theorem, in a sequel to this paper we show how this can be used in a localic, or point-free, description of the spectrum of a Banach algebra

    Integrals and Valuations

    Get PDF
    We construct a homeomorphism between the compact regular locale of integrals on a Riesz space and the locale of (valuations) on its spectrum. In fact, we construct two geometric theories and show that they are biinterpretable. The constructions are elementary and tightly connected to the Riesz space structure.Comment: Submitted for publication 15/05/0

    Type classes for efficient exact real arithmetic in Coq

    Get PDF
    Floating point operations are fast, but require continuous effort on the part of the user in order to ensure that the results are correct. This burden can be shifted away from the user by providing a library of exact analysis in which the computer handles the error estimates. Previously, we [Krebbers/Spitters 2011] provided a fast implementation of the exact real numbers in the Coq proof assistant. Our implementation improved on an earlier implementation by O'Connor by using type classes to describe an abstract specification of the underlying dense set from which the real numbers are built. In particular, we used dyadic rationals built from Coq's machine integers to obtain a 100 times speed up of the basic operations already. This article is a substantially expanded version of [Krebbers/Spitters 2011] in which the implementation is extended in the various ways. First, we implement and verify the sine and cosine function. Secondly, we create an additional implementation of the dense set based on Coq's fast rational numbers. Thirdly, we extend the hierarchy to capture order on undecidable structures, while it was limited to decidable structures before. This hierarchy, based on type classes, allows us to share theory on the naturals, integers, rationals, dyadics, and reals in a convenient way. Finally, we obtain another dramatic speed-up by avoiding evaluation of termination proofs at runtime.Comment: arXiv admin note: text overlap with arXiv:1105.275

    A constructive proof of Simpson's Rule

    Get PDF
    For most purposes, one can replace the use of Rolle's theorem and the mean value theorem, which are not constructively valid, by the law of bounded change. The proof of two basic results in numerical analysis, the error term for Lagrange interpolation and Simpson's rule, however seem to require the full strength of the classical Rolle's Theorem. The goal of this note is to justify these two results constructively, using ideas going back to Amp\`ere and Genocchi

    Sets in homotopy type theory

    Get PDF
    Homotopy Type Theory may be seen as an internal language for the \infty-category of weak \infty-groupoids which in particular models the univalence axiom. Voevodsky proposes this language for weak \infty-groupoids as a new foundation for mathematics called the Univalent Foundations of Mathematics. It includes the sets as weak \infty-groupoids with contractible connected components, and thereby it includes (much of) the traditional set theoretical foundations as a special case. We thus wonder whether those `discrete' groupoids do in fact form a (predicative) topos. More generally, homotopy type theory is conjectured to be the internal language of `elementary' \infty-toposes. We prove that sets in homotopy type theory form a ΠW\Pi W-pretopos. This is similar to the fact that the 00-truncation of an \infty-topos is a topos. We show that both a subobject classifier and a 00-object classifier are available for the type theoretical universe of sets. However, both of these are large and moreover, the 00-object classifier for sets is a function between 11-types (i.e. groupoids) rather than between sets. Assuming an impredicative propositional resizing rule we may render the subobject classifier small and then we actually obtain a topos of sets

    Modalities in homotopy type theory

    Full text link
    Univalent homotopy type theory (HoTT) may be seen as a language for the category of \infty-groupoids. It is being developed as a new foundation for mathematics and as an internal language for (elementary) higher toposes. We develop the theory of factorization systems, reflective subuniverses, and modalities in homotopy type theory, including their construction using a "localization" higher inductive type. This produces in particular the (nn-connected, nn-truncated) factorization system as well as internal presentations of subtoposes, through lex modalities. We also develop the semantics of these constructions

    Computer Verified Exact Analysis (Tutorial)

    Get PDF
    This tutorial will illustrate how to use the Coq proof assistant to implement effective and provably correct computation for analysis. Coq provides a dependently typed functional programming language that allows users to specify both programs and formal proofs. We will introduce dependent type theory and show how it can be used to develop both mathematics and programming. We will show how to use dependent type theory to implement constructive analysis. Specifically we will cover how to implement effective real numbers and effective integration. This work will be done using the Coq proof assistant. The tutorial will cover how to use the Coq proof assistant. Attendees are encouraged to download and install Coq 8.2 from {tt http://coq.inria.fr/download} and also download and make the full system of C-CoRN from {tt http://c-corn.cs.ru.nl/download.html} beforehand

    Computer-aided proofs for multiparty computation with active security

    Get PDF
    Secure multi-party computation (MPC) is a general cryptographic technique that allows distrusting parties to compute a function of their individual inputs, while only revealing the output of the function. It has found applications in areas such as auctioning, email filtering, and secure teleconference. Given its importance, it is crucial that the protocols are specified and implemented correctly. In the programming language community it has become good practice to use computer proof assistants to verify correctness proofs. In the field of cryptography, EasyCrypt is the state of the art proof assistant. It provides an embedded language for probabilistic programming, together with a specialized logic, embedded into an ambient general purpose higher-order logic. It allows us to conveniently express cryptographic properties. EasyCrypt has been used successfully on many applications, including public-key encryption, signatures, garbled circuits and differential privacy. Here we show for the first time that it can also be used to prove security of MPC against a malicious adversary. We formalize additive and replicated secret sharing schemes and apply them to Maurer's MPC protocol for secure addition and multiplication. Our method extends to general polynomial functions. We follow the insights from EasyCrypt that security proofs can be often be reduced to proofs about program equivalence, a topic that is well understood in the verification of programming languages. In particular, we show that in the passive case the non-interference-based definition is equivalent to a standard game-based security definition. For the active case we provide a new NI definition, which we call input independence
    corecore