112 research outputs found
Constructive Theory of Banach algebras
We present a way to organize a constructive development of the theory of
Banach algebras, inspired by works of Cohen, de Bruijn and Bishop. We
illustrate this by giving elementary proofs of Wiener's result on the inverse
of Fourier series and Wiener's Tauberian Theorem, in a sequel to this paper we
show how this can be used in a localic, or point-free, description of the
spectrum of a Banach algebra
Integrals and Valuations
We construct a homeomorphism between the compact regular locale of integrals
on a Riesz space and the locale of (valuations) on its spectrum. In fact, we
construct two geometric theories and show that they are biinterpretable. The
constructions are elementary and tightly connected to the Riesz space
structure.Comment: Submitted for publication 15/05/0
Type classes for efficient exact real arithmetic in Coq
Floating point operations are fast, but require continuous effort on the part
of the user in order to ensure that the results are correct. This burden can be
shifted away from the user by providing a library of exact analysis in which
the computer handles the error estimates. Previously, we [Krebbers/Spitters
2011] provided a fast implementation of the exact real numbers in the Coq proof
assistant. Our implementation improved on an earlier implementation by O'Connor
by using type classes to describe an abstract specification of the underlying
dense set from which the real numbers are built. In particular, we used dyadic
rationals built from Coq's machine integers to obtain a 100 times speed up of
the basic operations already. This article is a substantially expanded version
of [Krebbers/Spitters 2011] in which the implementation is extended in the
various ways. First, we implement and verify the sine and cosine function.
Secondly, we create an additional implementation of the dense set based on
Coq's fast rational numbers. Thirdly, we extend the hierarchy to capture order
on undecidable structures, while it was limited to decidable structures before.
This hierarchy, based on type classes, allows us to share theory on the
naturals, integers, rationals, dyadics, and reals in a convenient way. Finally,
we obtain another dramatic speed-up by avoiding evaluation of termination
proofs at runtime.Comment: arXiv admin note: text overlap with arXiv:1105.275
A constructive proof of Simpson's Rule
For most purposes, one can replace the use of Rolle's theorem and the mean
value theorem, which are not constructively valid, by the law of bounded
change. The proof of two basic results in numerical analysis, the error term
for Lagrange interpolation and Simpson's rule, however seem to require the full
strength of the classical Rolle's Theorem. The goal of this note is to justify
these two results constructively, using ideas going back to Amp\`ere and
Genocchi
Sets in homotopy type theory
Homotopy Type Theory may be seen as an internal language for the
-category of weak -groupoids which in particular models the
univalence axiom. Voevodsky proposes this language for weak -groupoids
as a new foundation for mathematics called the Univalent Foundations of
Mathematics. It includes the sets as weak -groupoids with contractible
connected components, and thereby it includes (much of) the traditional set
theoretical foundations as a special case. We thus wonder whether those
`discrete' groupoids do in fact form a (predicative) topos. More generally,
homotopy type theory is conjectured to be the internal language of `elementary'
-toposes. We prove that sets in homotopy type theory form a -pretopos. This is similar to the fact that the -truncation of an
-topos is a topos. We show that both a subobject classifier and a
-object classifier are available for the type theoretical universe of sets.
However, both of these are large and moreover, the -object classifier for
sets is a function between -types (i.e. groupoids) rather than between sets.
Assuming an impredicative propositional resizing rule we may render the
subobject classifier small and then we actually obtain a topos of sets
Modalities in homotopy type theory
Univalent homotopy type theory (HoTT) may be seen as a language for the
category of -groupoids. It is being developed as a new foundation for
mathematics and as an internal language for (elementary) higher toposes. We
develop the theory of factorization systems, reflective subuniverses, and
modalities in homotopy type theory, including their construction using a
"localization" higher inductive type. This produces in particular the
(-connected, -truncated) factorization system as well as internal
presentations of subtoposes, through lex modalities. We also develop the
semantics of these constructions
Computer Verified Exact Analysis (Tutorial)
This tutorial will illustrate how to use the Coq proof assistant to implement effective and provably correct computation for analysis. Coq provides a dependently typed functional programming language that allows users to specify both programs and formal proofs.
We will introduce dependent type theory and show how it can be used to develop both mathematics and programming. We will show how to use dependent type theory to implement constructive analysis. Specifically we will cover how to implement effective real numbers and effective integration.
This work will be done using the Coq proof assistant. The tutorial will cover how to use the Coq proof assistant. Attendees are encouraged to download and install Coq 8.2 from {tt http://coq.inria.fr/download} and also download and make the full system of C-CoRN from {tt http://c-corn.cs.ru.nl/download.html} beforehand
Computer-aided proofs for multiparty computation with active security
Secure multi-party computation (MPC) is a general cryptographic technique
that allows distrusting parties to compute a function of their individual
inputs, while only revealing the output of the function. It has found
applications in areas such as auctioning, email filtering, and secure
teleconference. Given its importance, it is crucial that the protocols are
specified and implemented correctly. In the programming language community it
has become good practice to use computer proof assistants to verify correctness
proofs. In the field of cryptography, EasyCrypt is the state of the art proof
assistant. It provides an embedded language for probabilistic programming,
together with a specialized logic, embedded into an ambient general purpose
higher-order logic. It allows us to conveniently express cryptographic
properties. EasyCrypt has been used successfully on many applications,
including public-key encryption, signatures, garbled circuits and differential
privacy. Here we show for the first time that it can also be used to prove
security of MPC against a malicious adversary. We formalize additive and
replicated secret sharing schemes and apply them to Maurer's MPC protocol for
secure addition and multiplication. Our method extends to general polynomial
functions. We follow the insights from EasyCrypt that security proofs can be
often be reduced to proofs about program equivalence, a topic that is well
understood in the verification of programming languages. In particular, we show
that in the passive case the non-interference-based definition is equivalent to
a standard game-based security definition. For the active case we provide a new
NI definition, which we call input independence
- …
