708 research outputs found

    Mathematical knowledge and skills expected by higher education in engineering and the social sciences: Implications for high school mathematics curriculum

    Get PDF
    Cataloged from PDF version of article.One important function of school mathematics curriculum is to prepare high school students with the knowledge and skills needed for university education. Identifying them empirically will help making sound decisions about the contents of high school mathematics curriculum. It will also help students to make informed choices in course selection at high school. In this study, we surveyed university faculty members who teach first year university students about the mathematical knowledge and skills that they would like to see in incoming high school graduates. Data were collected from 122 faculty members from social science (history, law, psychology) and engineering departments (electrical/electronics and computer engineering). Participants were asked to indicate which high school mathematics topics and skills they thought were important to be successful at university education in their field. Results were compared across social science and engineering departments. Implications were drawn for curriculum specialists, students, and mathematics educators

    Very high two-dimensional hole gas mobilities in strained silicon germanium

    Get PDF
    We report on the growth by solid source MBE and characterization of remote doped Si/SiGe/Si two-dimensional hole gas structures. It has been found that by reducing the Ge composition to <=13% and limiting the thickness of the alloy layer, growth temperatures can be increased up to 950 °C for these structures while maintaining good structural integrity and planar interfaces. Record mobilities of 19 820 cm2 V−1 s−1 at 7 K were obtained in normal structures. Our calculations suggest that alloy scattering is not important in these structures and that interface roughness and interface charge scattering limit the low temperature mobilities

    The inexorable resistance of inertia determines the initial regime of drop coalescence

    Get PDF
    Drop coalescence is central to diverse processes involving dispersions of drops in industrial, engineering and scientific realms. During coalescence, two drops first touch and then merge as the liquid neck connecting them grows from initially microscopic scales to a size comparable to the drop diameters. The curvature of the interface is infinite at the point where the drops first make contact, and the flows that ensue as the two drops coalesce are intimately coupled to this singularity in the dynamics. Conventionally, this process has been thought to have just two dynamical regimes: a viscous and an inertial regime with a crossover region between them. We use experiments and simulations to reveal that a third regime, one that describes the initial dynamics of coalescence for all drop viscosities, has been missed. An argument based on force balance allows the construction of a new coalescence phase diagram

    Metal Insulator transition at B=0 in p-SiGe

    Full text link
    Observations are reported of a metal-insulator transition in a 2D hole gas in asymmetrically doped strained SiGe quantum wells. The metallic phase, which appears at low temperatures in these high mobility samples, is characterised by a resistivity that decreases exponentially with decreasing temperature. This behaviour, and the duality between resistivity and conductivity on the two sides of the transition, are very similar to that recently reported for high mobility Si-MOSFETs.Comment: 4 pages, REVTEX with 3 ps figure

    Determination of inorganic arsenic in water by a quartz crystal microbalance

    Get PDF
    A quartz crystal microbalance sensor has been developed for the determination of inorganic arsenic species in water. The gold electrode surface was modified by a self-assembled layer of dithiothreitol, and the frequency change of the modified crystal was proportional to the arsenic concentration from 0 to around 50 µg L-1, a range which spans the current US EPA maximum contaminent level of 10 µg L-1 in drinking water. As dithiothreitol is capable of reducing arsenate to arsenite, the sensor detects both species. The method was applied to the determination of arsenic in spiked rain, tap, pond and bottled water; recoveries not significantly different from 100% were obtained for a number of spike additions of less than 10 µg L -1. Arsenic was only detected in the bottled water sample, at a concentration of 8 µg L-1. This method is simple, fast, and inexpensive compared with other conventional arsenic detection methods, and has the potential to be used in the field. © 2013 The Royal Society of Chemistry

    Becoming international: On symbolic capital, conversion and privilege

    Get PDF
    The ‘international’ can be conceived of as a highly sought after symbolic capital. People seek to internationalise their curriculum vitae or resumes, study international subjects, get international diplomas, travel internationally, obtain international jobs. As symbolic capital the ‘international’ can be converted into ‘profit’ complementing other forms of capital (economic, cultural and social capital), deployed in struggles for social domination. It is used as a strategy of social positioning and social domination quasi-globally, but it is not recognised everywhere in the same way. We are particularly interested in the unequal distribution of this symbolic capital, the way differential conversion rates and social boundaries operate in the generation of social inequalities. For this, we will work with and against Bourdieu, in analysing the ‘international’ as a source of a highly contextual form of symbolic power, deployed in a variety of social group formations, but with uneven, differential effects, a naturalised and disguised form of domination. Ultimately, this article problematises how claims to ‘internationality’ operate in social relations and power-struggles and provides an analytical framework hereof. </jats:p

    Formation of beads-on-a-string structures during break-up of viscoelastic filaments

    Get PDF
    Break-up of viscoelastic filaments is pervasive in both nature and technology. If a filament is formed by placing a drop of saliva between a thumb and forefinger and is stretched, the filament’s morphology close to break-up corresponds to beads of several sizes interconnected by slender threads. Although there is general agreement that formation of such beads-on-a-string (BOAS) structures occurs only for viscoelastic fluids, the underlying physics remains unclear and controversial. The physics leading to the formation of BOAS structures is probed by numerical simulation. Computations reveal that viscoelasticity alone does not give rise to a small, satellite bead between two much larger main beads but that inertia is required for its formation. Viscoelasticity, however, enhances the growth of the bead and delays pinch-off, which leads to a relatively long-lived beaded structure. We also show for the first time theoretically that yet smaller, sub-satellite beads can also form as seen in experiments.National Science Foundation (U.S.). ERC-SOPS (EEC-0540855)Nanoscale Interdisciplinary Research Thrust on 'Directed Self-assembly of Suspended Polymer Fibers' (NSF-DMS0506941

    Myxomycetes of Belgrad Forest (Istanbul)

    Get PDF
    Myxomycetes were collected in the Belgrad Forest, which is located near Istanbul in the Thrace region of Turkey, between February 2002 and January 2003. Sixty-two species of myxomycetes belonging to 21 genera were recorded from field and moist chamber culture collections. A map of the study area, material & method and the checklist are available at the website http://biyoloji.uludag.edu.tr/ergul/Checklist-003. pdf

    Exchange-bias phenomenon: The role of the ferromagnetic spin strucutre

    Get PDF
    The exchange bias of antiferromagnetic-ferromagnetic (AFM-FM) bilayers is found to be strongly dependent on the ferromagnetic spin configuration. The widely accepted inverse proportionality of the exchange bias field with the ferromagnetic thickness is broken in FM layers thinner than the FM correlation length. Moreover, an anomalous thermal dependence of both exchange bias field and coercivity is also found. A model based on springlike domain walls parallel to the AFM-FM interface quantitatively accounts for the experimental results and, in particular, for the deviation from the inverse proportionality law. These results reveal the active role the ferromagnetic spin structure plays in AFM-FM hybrids which leads to a new paradigm of the exchange bias phenomenon
    corecore