5,122 research outputs found

    The theoretical and empirical links between bullying behavior and male sexual violence perpetration

    Get PDF
    Bullying experiences and male sexual violence (SV) perpetration are major public health problems, and while extant literature suggests that they may share some developmental correlates, there is no established empirical link between being a perpetrator or victim of bullying and SV perpetration in the literature. Nonetheless, some SV prevention programs in the U.S. include bullying prevention components for elementary and middle-school aged children. Research is needed to test the hypothesized links between bullying experiences and SV perpetration to determine whether bullying prevention programs are likely to prevent SV perpetration. The purpose of this paper is to present results from a review of research on each of these topics and to discuss the potential shared and unique risk and protective factors within a social-ecological framework. The paper concludes with suggested directions for future research

    Fluctuations in Hadronic and Nuclear Collisions

    Get PDF
    We investigate several fluctuation effects in high-energy hadronic and nuclear collisions through the analysis of different observables. To introduce fluctuations in the initial stage of collisions, we use the Interacting Gluon Model (IGM) modified by the inclusion of the impact parameter. The inelasticity and leading-particle distributions follow directly from this model. The fluctuation effects on rapidity distributions are then studied by using Landau's Hydrodynamic Model in one dimension. To investigate further the effects of the multiplicity fluctuation, we use the Longitudinal Phase-Space Model, with the multiplicity distribution calculated within the hydrodynamic model, and the initial conditions given by the IGM. Forward-backward correlation is obtained in this way.Comment: 22 pages, RevTex, 8 figures (included); Invited paper to the special issue of Foundation of Physics dedicated to Mikio Namiki's 70th. birthda

    QCD and models on multiplicities in e+ee^+e^- and ppˉp\bar p interactions

    Full text link
    A brief survey of theoretical approaches to description of multiplicity distributions in high energy processes is given. It is argued that the multicomponent nature of these processes leads to some peculiar characteristics observed experimentally. Predictions for LHC energies are presented. It is shown that similarity of the energy dependence of average multiplicities in different reactions is not enough alone to suggest the universal mechanism of particle production in strongly-interacting systems. Other characteristics of multiplicity distributions depend on the nature of colliding partners.Comment: 16 pages, 11 figures, Phys. Atom. Nuc

    Random matrix analysis of the QCD sign problem for general topology

    Full text link
    Motivated by the important role played by the phase of the fermion determinant in the investigation of the sign problem in lattice QCD at nonzero baryon density, we derive an analytical formula for the average phase factor of the fermion determinant for general topology in the microscopic limit of chiral random matrix theory at nonzero chemical potential, for both the quenched and the unquenched case. The formula is a nontrivial extension of the expression for zero topology derived earlier by Splittorff and Verbaarschot. Our analytical predictions are verified by detailed numerical random matrix simulations of the quenched theory.Comment: 33 pages, 9 figures; v2: minor corrections, references added, figures with increased statistics, as published in JHE

    Rapid prototyping of plastic lab-on-a-chip by femtosecond laser micromachining and removable insert microinjection molding

    Get PDF
    We have introduced a new hybrid fabrication method for lab-on-a-chip devices through the combination of femtosecond laser micromachining and removable insert micro-injection molding. This method is particularly suited for the fast prototyping of new devices, while maintaining a competitive low cost. To demonstrate the effectiveness of our approach, we designed, fabricated, and tested a completely integrated flow cytometer coupled to a portable media device. The system operation was tested with fluorescent plastic micro-bead solutions ranging from 100 beads/?L to 500 beads/?L. We demonstrated that this hybrid lab-on-a-chip fabrication technology is suitable for producing low-cost and portable biological microsystems and for effectively bridging the gap between new device concepts and their mass production

    Carbon storage and DNA absorption in allophanic soils and paleosols

    Get PDF
    Andisols and andic paleosols dominated by the nanocrystalline mineral allophane sequester large amounts of carbon (C), attributable mainly to its chemical bonding with charged hydroxyl groups on the surface of allophane together with its physical protection in nanopores within and between allophane nanoaggregates. C near-edge X-ray absorption fine structure (NEXAFS) spectra for a New Zealand Andisol (Tirau series) showed that the organic matter (OM) mainly comprises quinonic, aromatic, aliphatic, and carboxylic C. In different buried horizons from several other Andisols, C contents varied but the C species were similar, attributable to pedogenic processes operating during developmental upbuilding, downward leaching, or both. The presence of OM in natural allophanic soils weakened the adsorption of DNA on clay; an adsorption isotherm experiment involving humic acid (HA) showed that HA-free synthetic allophane adsorbed seven times more DNA than HA-rich synthetic allophane. Phosphorus X-ray absorption near-edge structure (XANES) spectra for salmonsperm DNA and DNA-clay complexes indicated that DNA was bound to the allophane clay through the phosphate group, but it is not clear if DNA was chemically bound to the surface of the allophane or to OM, or both. We plan more experiments to investigate interactions among DNA, allophane (natural and synthetic), and OM. Because DNA shows a high affinity to allophane, we are studying the potential to reconstruct late Quaternary palaeoenvironments by attempting to extract and characterise ancient DNA from allophanic paleosol

    Studies of multiplicity in relativistic heavy-ion collisions

    Full text link
    In this talk I'll review the present status of charged particle multiplicity measurements from heavy-ion collisions. The characteristic features of multiplicity distributions obtained in Au+Au collisions will be discussed in terms of collision centrality and energy and compared to those of p+p collisions. Multiplicity measurements of d+Au collisions at 200 GeV nucleon-nucleon center-of-mass energy will also be discussed. The results will be compared to various theoretical models and simple scaling properties of the data will be identified.Comment: "Focus on Multiplicity" Internationsl Workshop on Particle Multiplicity in Relativistic Heavy Ion Collisions, Bari, Italy, June 17-19, 2003, 16 pages, 15 figure

    Multiplicity Studies and Effective Energy in ALICE at the LHC

    Full text link
    In this work we explore the possibility to perform ``effective energy'' studies in very high energy collisions at the CERN Large Hadron Collider (LHC). In particular, we focus on the possibility to measure in pppp collisions the average charged multiplicity as a function of the effective energy with the ALICE experiment, using its capability to measure the energy of the leading baryons with the Zero Degree Calorimeters. Analyses of this kind have been done at lower centre--of--mass energies and have shown that, once the appropriate kinematic variables are chosen, particle production is characterized by universal properties: no matter the nature of the interacting particles, the final states have identical features. Assuming that this universality picture can be extended to {\it ion--ion} collisions, as suggested by recent results from RHIC experiments, a novel approach based on the scaling hypothesis for limiting fragmentation has been used to derive the expected charged event multiplicity in AAAA interactions at LHC. This leads to scenarios where the multiplicity is significantly lower compared to most of the predictions from the models currently used to describe high energy AAAA collisions. A mean charged multiplicity of about 1000-2000 per rapidity unit (at η0\eta \sim 0) is expected for the most central PbPbPb-Pb collisions at sNN=5.5TeV\sqrt{s_{NN}} = 5.5 TeV.Comment: 12 pages, 19 figures. In memory of A. Smirnitski

    Study of single muons with the Large Volume Detector at Gran Sasso Laboratory

    Get PDF
    The present study is based on the sample of about 3 mln single muons observed by LVD at underground Gran Sasso Laboratory during 36500 live hours from June 1992 to February 1998. We have measured the muon intensity at slant depths from 3 km w.e. to 20 km w.e. Most events are high energy downward muons produced by meson decay in the atmosphere. The analysis of these muons has revealed the power index of pion and kaon spectrum: 2.76 \pm 0.05. The reminders are horizontal muons produced by the neutrino interactions in the rock surrounding LVD. The value of this flux is obtained. The results are compared with Monte Carlo simulations and the world data.Comment: 13 pages, 2 figures, accepted for publication in "Physics of Atomic Nuclei
    corecore