1,021 research outputs found
Non-Pauli Effects from Noncommutative Spacetimes
Noncommutative spacetimes lead to nonlocal quantum field theories (qft's)
where spin-statistics theorems cannot be proved. For this reason, and also
backed by detailed arguments, it has been suggested that they get corrected on
such spacetimes leading to small violations of the Pauli principle. In a recent
paper \cite{Pauli}, Pauli-forbidden transitions from spacetime noncommutativity
were calculated and confronted with experiments. Here we give details of the
computation missing from this paper. The latter was based on a spacetime
different from the Moyal plane. We argue that it
quantizes time in units of . Energy is then conserved only mod
. Issues related to superselection rules raised by non-Pauli
effects are also discussed in a preliminary manner.Comment: 15 Pages, 1 Table, Full details and further developments of
arXiv:1003.2250. This version is close to the one accepted by JHE
‘No causative variants found’: an unusual presentation of PAX2-related disorder not detected on rapid whole exome sequencing testing
Genetic investigations in cerebral palsy
\ua9 2024 The Author(s). Developmental Medicine & Child Neurology published by John Wiley & Sons Ltd on behalf of Mac Keith Press.The original description of cerebral palsy (CP) contained case histories suggesting that perinatal environmental stressors resulted in brain injury and neurodevelopmental disability. While there are clear associations between environmental impact on brain development and CP, recent studies indicate an 11% to 40% incidence of monogenic conditions in patients given a diagnosis of CP. A genetic diagnosis supports the delivery of personalized medicine. In this review, we describe how the Wnt pathway exemplifies our understanding of pathophysiology related to a gene variant (CTNNB1) found in some children diagnosed with CP. We cover studies undertaken to establish the baseline prevalence of monogenic conditions in populations attending CP clinics. We list factors indicating increased likelihood of a genomic diagnosis; and we highlight the need for a comprehensive, accurate, genotype–phenotype reference data set to aid variant interpretation in CP cohorts. We also consider the wider societal implications of genomic management of CP including significance of the diagnostic label, benefits and pitfalls of a genetic diagnosis, logistics, and cost
The actin-myosin regulatory MRCK kinases: regulation, biological functions and associations with human cancer
The contractile actin-myosin cytoskeleton provides much of the force required for numerous cellular activities such as motility, adhesion, cytokinesis and changes in morphology. Key elements that respond to various signal pathways are the myosin II regulatory light chains (MLC), which participate in actin-myosin contraction by modulating the ATPase activity and consequent contractile force generation mediated by myosin heavy chain heads. Considerable effort has focussed on the role of MLC kinases, and yet the contributions of the myotonic dystrophy-related Cdc42-binding kinases (MRCK) proteins in MLC phosphorylation and cytoskeleton regulation have not been well characterized. In contrast to the closely related ROCK1 and ROCK2 kinases that are regulated by the RhoA and RhoC GTPases, there is relatively little information about the CDC42-regulated MRCKα, MRCKβ and MRCKγ members of the AGC (PKA, PKG and PKC) kinase family. As well as differences in upstream activation pathways, MRCK and ROCK kinases apparently differ in the way that they spatially regulate MLC phosphorylation, which ultimately affects their influence on the organization and dynamics of the actin-myosin cytoskeleton. In this review, we will summarize the MRCK protein structures, expression patterns, small molecule inhibitors, biological functions and associations with human diseases such as cancer
The stellar and sub-stellar IMF of simple and composite populations
The current knowledge on the stellar IMF is documented. It appears to become
top-heavy when the star-formation rate density surpasses about 0.1Msun/(yr
pc^3) on a pc scale and it may become increasingly bottom-heavy with increasing
metallicity and in increasingly massive early-type galaxies. It declines quite
steeply below about 0.07Msun with brown dwarfs (BDs) and very low mass stars
having their own IMF. The most massive star of mass mmax formed in an embedded
cluster with stellar mass Mecl correlates strongly with Mecl being a result of
gravitation-driven but resource-limited growth and fragmentation induced
starvation. There is no convincing evidence whatsoever that massive stars do
form in isolation. Various methods of discretising a stellar population are
introduced: optimal sampling leads to a mass distribution that perfectly
represents the exact form of the desired IMF and the mmax-to-Mecl relation,
while random sampling results in statistical variations of the shape of the
IMF. The observed mmax-to-Mecl correlation and the small spread of IMF
power-law indices together suggest that optimally sampling the IMF may be the
more realistic description of star formation than random sampling from a
universal IMF with a constant upper mass limit. Composite populations on galaxy
scales, which are formed from many pc scale star formation events, need to be
described by the integrated galactic IMF. This IGIMF varies systematically from
top-light to top-heavy in dependence of galaxy type and star formation rate,
with dramatic implications for theories of galaxy formation and evolution.Comment: 167 pages, 37 figures, 3 tables, published in Stellar Systems and
Galactic Structure, Vol.5, Springer. This revised version is consistent with
the published version and includes additional references and minor additions
to the text as well as a recomputed Table 1. ISBN 978-90-481-8817-
Stability of Organic Carbon Components in Shale: Implications for Carbon Cycle
Stability and mobility of organic matter in shale is significant from the perspective of
carbon cycle. Shale can only be an effective sink provided that the organic carbon
present is stable and immobile from the host sites and, not released easily during
geological processes such as low pressure-temperature burial diagenesis and higher
pressure-temperature subduction. To examine this, three Jurassic shale samples of
known mineralogy and total organic carbon content, with dominantly continental source
of organic matter, belonging to the Haynesville-Bossier Formation were combusted by
incremental heating from temperature of 200 to 1400◦C. The samples were analyzed for
their carbon and nitrogen release profiles, bulk δ
13C composition and C/N atomic ratio,
based on which, at least four organic carbon components are identified associated
with different minerals such as clay, carbonate, and silicate. They have different stability
depending on their host sites and occurrences relative to the mineral phases and
consequently, released at different temperature during combustion. The components
identified are denoted as, C-1 (organic carbon occurring as free accumulates at the
edge or mouth of pore spaces), C-2 (associated with clay minerals, adsorbed or
as organomineral nanocomposites; with carbonate minerals, biomineralized and/or
occluded), C-3(a) (occurring with silicate minerals, biomineralized and/or occluded) and
C-3(b) (graphitized carbon). They show an increasing stability and decreasing mobility
from C-1 to C-3(b). Based on the stability of the different OC components, shale is
clearly an efficient sink for the long term C cycle as, except for C-1 which forms a
very small fraction of the total and is released at temperature of ∼200◦C, OC can be
efficiently locked in shale surviving conditions of burial diagenesis and, subduction at
fore arc regions in absence of infiltrating fluids. Under low fluid flux, C-3(b) can be
efficiently retained as a refractory phase in the mantle when subducted. It is evident
that the association and interaction of the organic matter with the different minerals play
an important role in its retention in the shale
Vitamin B12 deficiency presenting as methyl malonic acidaemia mimic with abnormal MRI brain and artefactually raised serum B12.
Neutrophils in cancer: neutral no more
Neutrophils are indispensable antagonists of microbial infection and facilitators of wound healing. In the cancer setting, a newfound appreciation for neutrophils has come into view. The traditionally held belief that neutrophils are inert bystanders is being challenged by the recent literature. Emerging evidence indicates that tumours manipulate neutrophils, sometimes early in their differentiation process, to create diverse phenotypic and functional polarization states able to alter tumour behaviour. In this Review, we discuss the involvement of neutrophils in cancer initiation and progression, and their potential as clinical biomarkers and therapeutic targets
Control of sulphide during anaerobic treatment of S-containing wastewaters by adding limited amounts of oxygen or nitrate
Sulphide generated during anaerobic treatment of S-containing wastewaters represents an environmental problem. Adding limited amounts of oxygen or nitrate (or nitrite) to biologically (or chemically) oxidise sulphide forms a simple process level strategy to control this problem. This short review evaluates the feasibility and limitations of this strategy on the basis of the results of bioreactor studies.Sulphide generated during anaerobic treatment of S-containing wastewaters represents an environmental problem. Adding limited amounts of oxygen or nitrate (or nitrite) to biologically (or chemically) oxidise sulphide forms a simple process level strategy to control this problem. This short review evaluates the feasibility and limitations of this strategy on the basis of the results of bioreactor studies.Spanish Ministry
of Education and Science; AEA Technology
Environment; Nova Energie; The
Swedish Gas Centre; University of Southern
Denmark
Dynamics of a Quantum Phase Transition and Relaxation to a Steady State
We review recent theoretical work on two closely related issues: excitation
of an isolated quantum condensed matter system driven adiabatically across a
continuous quantum phase transition or a gapless phase, and apparent relaxation
of an excited system after a sudden quench of a parameter in its Hamiltonian.
Accordingly the review is divided into two parts. The first part revolves
around a quantum version of the Kibble-Zurek mechanism including also phenomena
that go beyond this simple paradigm. What they have in common is that
excitation of a gapless many-body system scales with a power of the driving
rate. The second part attempts a systematic presentation of recent results and
conjectures on apparent relaxation of a pure state of an isolated quantum
many-body system after its excitation by a sudden quench. This research is
motivated in part by recent experimental developments in the physics of
ultracold atoms with potential applications in the adiabatic quantum state
preparation and quantum computation.Comment: 117 pages; review accepted in Advances in Physic
- …
