614 research outputs found

    Multivariate time series classification with temporal abstractions

    Get PDF
    The increase in the number of complex temporal datasets collected today has prompted the development of methods that extend classical machine learning and data mining methods to time-series data. This work focuses on methods for multivariate time-series classification. Time series classification is a challenging problem mostly because the number of temporal features that describe the data and are potentially useful for classification is enormous. We study and develop a temporal abstraction framework for generating multivariate time series features suitable for classification tasks. We propose the STF-Mine algorithm that automatically mines discriminative temporal abstraction patterns from the time series data and uses them to learn a classification model. Our experimental evaluations, carried out on both synthetic and real world medical data, demonstrate the benefit of our approach in learning accurate classifiers for time-series datasets. Copyright © 2009, Assocation for the Advancement of ArtdicaI Intelligence (www.aaai.org). All rights reserved

    Magnetic Field Uniformity Across the GF 9-2 YSO, L1082C Dense Core, and GF 9 Filamentary Dark Cloud

    Full text link
    The orientation of the magnetic field (B-field) in the filamentary dark cloud GF 9 was traced from the periphery of the cloud into the L1082C dense core that contains the low-mass, low-luminosity Class 0 young stellar object (YSO) GF 9-2 (IRAS 20503+6006). This was done using SOFIA HAWC+ dust thermal emission polarimetry (TEP) at 216 um in combination with Mimir near-infrared background starlight polarimetry (BSP) conducted at H-band (1.6 um) and K-band (2.2 um). These observations were augmented with published I-band (0.77 um) BSP and Planck 850 um TEP to probe B-field orientations with offset from the YSO in a range spanning 6000 AU to 3 pc. No strong B-field orientation change with offset was found, indicating remarkable uniformity of the B-field from the cloud edge to the YSO environs. This finding disagrees with weak-field models of cloud core and YSO formation. The continuity of inferred B-field orientations for both TEP and BSP probes is strong evidence that both are sampling a common B-field that uniformly threads the cloud, core, and YSO region. Bayesian analysis of Gaia DR2 stars matched to the Mimir BSP stars finds a distance to GF 9 of 270 +/- 10 pc. No strong wavelength dependence of B-field orientation angle was found, contrary to previous claims.Comment: 18 pages, 6 figures ApJ, accepte

    Proper Motion of the Faint Star near KIC 8462852 (Boyajian's Star) - Not a Binary System

    Full text link
    A faint star located 2 arcsec from KIC 8462852 was discovered in Keck 10 m adaptive optics imaging in the JHKJHK near-infrared (NIR) in 2014 by Boyajian et al. (2016). The closeness of the star to KIC 8462852 suggested the two could constitute a binary, which might have implications for the cause of the brightness dips seen by {\it Kepler} (Boyajian et al. (2016) and in ground-based optical studies Boyajian et al. (2018). Here, NIR imaging in 2017 using the Mimir instrument resolved the pair and enabled measuring their separation. The faint star had moved 67±767 \pm 7 milliarcsec (mas) relative to KIC 8462852 since 2014. The relative proper motion of the faint star is 23.9±2.623.9 \pm 2.6 mas yr1^{-1}, for a tangential velocity of 45±545 \pm 5 km s1^{-1} if it is at the same 390 pc distance as KIC 8462852. Circular velocity at the 750 AU current projected separation is 1.51.5 km s1^{-1}, hence the star pair cannot be bound.Comment: 10 pages, 2 figure

    Gamma radiation mediated green synthesis of gold nanoparticles using fermented soybean-garlic aqueous extract and their antimicrobial activity

    Get PDF
    Aspergillus oryzae was used to enhance the mobilization of antioxidants of soybean matrix along with garlic as a co-substrate by modulating polyphenolic substances during solid-state fermentation. Mobilized polyphenols were used as a green tool for synthesis and stabilization of gold nanoparticles (AuNPs). The radiation-induced AuNPs synthesis is a simple, clean and inexpensive process which involves radiolysis of aqueous solution that provides an efficient method to reduce metal ions. Gamma irradiated aqueous extract of fermented soybean and garlic was used for rapid preparation of AuNPs combining both effects of radiolytic reactions by radiation and stabilization by bioactive components of fermented extract. The synthesized AuNPs were confirmed by UV-Visible spectrophotometry, dynamic light scattering (DLS), Fourier Transform infra red (FT-IR) spectrophotometry, and transmission electron microscope (TEM) analysis which revealed morphology of spherical AuNPs with size ranging from 7–12 nm. The synthesized AuNPs exhibited antimicrobial activity against both Gram positive and Gram negative bacteria, as measured by well diffusion assay

    Application of Pseudo-Hermitian Quantum Mechanics to a Complex Scattering Potential with Point Interactions

    Full text link
    We present a generalization of the perturbative construction of the metric operator for non-Hermitian Hamiltonians with more than one perturbation parameter. We use this method to study the non-Hermitian scattering Hamiltonian: H=p^2/2m+\zeta_-\delta(x+a)+\zeta_+\delta(x-a), where \zeta_\pm and a are respectively complex and real parameters and \delta(x) is the Dirac delta function. For regions in the space of coupling constants \zeta_\pm where H is quasi-Hermitian and there are no complex bound states or spectral singularities, we construct a (positive-definite) metric operator \eta and the corresponding equivalent Hermitian Hamiltonian h. \eta turns out to be a (perturbatively) bounded operator for the cases that the imaginary part of the coupling constants have opposite sign, \Im(\zeta_+) = -\Im(\zeta_-). This in particular contains the PT-symmetric case: \zeta_+ = \zeta_-^*. We also calculate the energy expectation values for certain Gaussian wave packets to study the nonlocal nature of \rh or equivalently the non-Hermitian nature of \rH. We show that these physical quantities are not directly sensitive to the presence of PT-symmetry.Comment: 22 pages, 4 figure

    Mechanical Analysis of WEST divertor support plate

    Get PDF
    The Tore Supra tokamak is being transformed in an x-point divertor fusion device in the frame of the WEST (W-for tungsten-Environment in Steady-state Tokamak) project, launched in support to the ITER tungsten divertor strategy. The WEST project aims to test W monoblock Plasma Facing Units (PFU) under long plasma discharge (up to 1000s), with thermal loads of the same magnitude as those expected for ITER. Therefore the divertor is a key component of the WEST project, and so is its support structure, which has to handle strong mechanical loads. The WEST upper and lower divertor are made of 12 30° sectors, each one composed of 38 PFU that can be made of tungsten, CuCrZr or graphite. A generic 316L stainless steel 30° conic support plate is used to hold the 38 PFU together, regardless of their material. The PFUs are fixed on the support plate thanks to 152 Xm19 stainless steel fixing elements (4 per PFU), and in each of this fixing element an Aluminium-Nickel-Bronze alloy (Al-Ni-Br) pin is engaged in a slotted hole, in order to allow thermal expansion in the length direction of the PFU. The support plate is fixed on the divertor coil casing thanks to 10 M10 screws. Mechanicals loads which act on the PFUs are transmitted to the support plate through the fixing elements. These loads are due to Vertical Displacement Event (VDE), disruptions and thermal expansion of the PFU. First the different load cases, PFU configurations and scenario are presented. Then an ANSYS plastic mechanical simulation is performed in order to validate the number of cycles of the support plate for each scenario: 30 000 cycles in steady-state and 3000 cycles in VDE. Finally reactions forces from the previous ANSYS simulation are used in order to calculate the stress in the M10 screws

    On design and tribological behaviour of laser textured surfaces

    Get PDF
    The paper reports an investigation into the functional response of textured surfaces with different designs that incorporated arrays of micro-dimples and grooves (40 μm diameter/width and 15 μm depth for both patterns) produced on tungsten carbide (WC) blocks by employing nanosecond (ns) and femtosecond (fs) lasers. In particular, the tribological performance of the textured WC blocks against stainless steel (SS316L) counterbody was evaluated in terms of friction and wear under dry condition compared to an untextured specimen. Friction tests were carried out on a reciprocating sliding tester while unidirectional ball-on-disc method was utilised to assess wear on the mating surfaces. The untextured surface exhibited a continuous rise in the friction coefficient from 0.15 to 0.5 from the start of the cycle to the end while the specimens textured with ns and fs lasers reached steady-state condition after 100 and 200 cycles with values between 0.35-0.45 and 0.3-0.4, respectively. Energy dispersive spectroscopy following wear tests showed a pronounced material transfer from the balls to the textured surfaces with stainless steel filling up some of the dimple and groove cavities; however, the reverse phenomenon was not apparent. Additionally, texturing with the fs laser exhibited formation of nano-ripples/structures in the produced dimples and grooves that can be further studied for creating nano-textured cutting tools or surfaces with super-hydrophobic/anti-ice properties

    NuSTAR Observations of the Black Hole GS 1354-645: Evidence of Rapid Black Hole Spin

    Get PDF
    We present the results of a NuSTAR study of the dynamically confirmed stellar-mass black hole GS 1354-645. The source was observed during its 2015 "hard" state outburst; we concentrate on spectra from two relatively bright phases. In the higher-flux observation, the broadband NuSTAR spectra reveal a clear, strong disk reflection spectrum, blurred by a degree that requires a black hole spin of a = cJ/GM^2 > 0.98 (1 sigma statistical limits only). The fits also require a high inclination: theta = 75(2) degrees. Strong "dips" are sometimes observed in the X-ray light curves of sources viewed at such an angle; these are absent, perhaps indicating that dips correspond to flared disk structures that only manifest at higher accretion rates. In the lower-flux observation, there is evidence of radial truncation of the thin accretion disk. We discuss these results in the context of spin in stellar-mass black holes, and inner accretion flow geometries at moderate accretion rates.Comment: Accepted for publication in ApJ Letter

    The effect of growth regulators on maturation, wieght, size and quality of fruit in tomato (Lycopersicon esculentum)

    Get PDF
    The quality of market vegetables is one of the factors that determines price and salability. In addition to quality the earliness in maturity is important for the highest profit to the grower. The effects of many synthetic growth regulating substances on flowers or vegetative structures of plants have been studied for over 30 years. During this period significant effects upon fruit set and development have been observed. The tomato was one of the vegetable crops on which chemicals were used for promoting fruit set and development. Currently, there is no concrete evidence that the regulating substances improved the quality of the tomato fruit enough to affect market acceptance. The various effects of the substances such as auxins, gibberellins, and kinins upon many species and varieties of horticultural plants will aid in understanding the nature of the morphological changes occurring during fruit set and development. The use of combinations of these substances might make it pos-sible to further investigate the effects of such growth regulators on fruit growth and development up to maturity

    Coherent and squeezed states of quantum Heisenberg algebras

    Full text link
    Starting from deformed quantum Heisenberg Lie algebras some realizations are given in terms of the usual creation and annihilation operators of the standard harmonic oscillator. Then the associated algebra eigenstates are computed and give rise to new classes of deformed coherent and squeezed states. They are parametrized by deformed algebra parameters and suitable redefinitions of them as paragrassmann numbers. Some properties of these deformed states also are analyzed.Comment: 32 pages, 3 figure
    corecore