18 research outputs found
Improving the clinical assessment of consciousness with advances in electrophysiological and neuroimaging techniques
In clinical neurology, a comprehensive understanding of consciousness has been regarded as an abstract concept - best left to philosophers. However, times are changing and the need to clinically assess consciousness is increasingly becoming a real-world, practical challenge. Current methods for evaluating altered levels of consciousness are highly reliant on either behavioural measures or anatomical imaging. While these methods have some utility, estimates of misdiagnosis are worrisome (as high as 43%) - clearly this is a major clinical problem. The solution must involve objective, physiologically based measures that do not rely on behaviour. This paper reviews recent advances in physiologically based measures that enable better evaluation of consciousness states (coma, vegetative state, minimally conscious state, and locked in syndrome). Based on the evidence to-date, electroencephalographic and neuroimaging based assessments of consciousness provide valuable information for evaluation of residual function, formation of differential diagnoses, and estimation of prognosis
The Envelope Cytoplasmic Tail of HIV-1 Subtype C Contributes to Poor Replication Capacity through Low Viral Infectivity and Cell-to-Cell Transmission.
The cytoplasmic tail (gp41CT) of the HIV-1 envelope (Env) mediates Env incorporation into virions and regulates Env intracellular trafficking. Little is known about the functional impact of variability in this domain. To address this issue, we compared the replication of recombinant virus pairs carrying the full Env (Env viruses) or the Env ectodomain fused to the gp41CT of NL4.3 (EnvEC viruses) (12 subtype C and 10 subtype B pairs) in primary CD4+ T-cells and monocyte-derived-macrophages (MDMs). In CD4+ T-cells, replication was as follows: B-EnvEC = B-Env>C-EnvEC>C-Env, indicating that the gp41CT of subtype C contributes to the low replicative capacity of this subtype. In MDMs, in contrast, replication capacity was comparable for all viruses regardless of subtype and of gp41CT. In CD4+ T-cells, viral entry, viral release and viral gene expression were similar. However, infectivity of free virions and cell-to-cell transmission of C-Env viruses released by CD4+ T-cells was lower, suggestive of lower Env incorporation into virions. Subtype C matrix only minimally rescued viral replication and failed to restore infectivity of free viruses and cell-to-cell transmission. Taken together, these results show that polymorphisms in the gp41CT contribute to viral replication capacity and suggest that the number of Env spikes per virion may vary across subtypes. These findings should be taken into consideration in the design of vaccines
Ethical decision-making in two patients with locked-in syndrome on the intensive care unit
Linking numbers to perceptions and experiences: Why we need transdisciplinary mixed-methods combining neurophysiological and qualitative data
Β-Amylase from Starchless Seeds of Trigonella Foenum-Graecum and Its Localization in Germinating Seeds
Fenugreek (Trigonella foenum-graecum) seeds do not contain starch as carbohydrate reserve. Synthesis of starch is initiated after germination. A β-amylase from ungerminated fenugreek seeds was purified to apparent electrophoretic homogeneity. The enzyme was purified 210 fold with specific activity of 732.59 units/mg. M(r) of the denatured enzyme as determined from SDS-PAGE was 58 kD while that of native enzyme calculated from size exclusion chromatography was 56 kD. Furthermore, its identity was confirmed to be β-amylase from MALDI-TOF analysis. The optimum pH and temperature was found to be 5.0 and 50°C, respectively. Starch was hydrolyzed at highest rate and enzyme showed a K(m) of 1.58 mg/mL with it. Antibodies against purified Fenugreek β-amylase were generated in rabbits. These antibodies were used for localization of enzyme in the cotyledon during different stages of germination using fluorescence and confocal microscopy. Fenugreek β-amylase was found to be the major starch degrading enzyme depending on the high amount of enzyme present as compared to α-amylase and also its localization at the periphery of amyloplasts. A new finding in terms of its association with protophloem was observed. Thus, this enzyme appears to be important for germination of seeds
