820 research outputs found
Elimination de la matière organique biodégradable par ultrafiltration
Les installations de production de la Compagnie des Eaux de banlieue (CEB) au Mont Valérien traitent l'eau de Seine en aval de Paris sur 2 filières de potabilisation comprenant pour la première (50 000 m3/J) une préozonation, une coagulation au sels d'Aluminium (Aqualenc), une décantation (super pulsator Degrémont), une filtration sur sable, une ozonation, une filtration sur charbon actif en grains (CAG) et une désinfection finale au bioxyde de chlore, et pour la deuxième, une filtration lente sur sable (80 000 m3/j) dite filtration "Chabale".Dans le cadre du remplacement de la filière "Chabale", une unité de démonstration (8 m3/h) eomprenaut une addition de charbon actif en poudre (CAP) avant ultrafiltration sur membrane a été mise en route.Dans cette étude, une comparaison du traitement conventionnel physico-chimique de l'usine et du nouveau procédé d'ultrafiltration a été effectuée. Pour cela, un suivi du carbone organique total et une évaluation du potentiel de reviviscence ont été réalisés en différents points des chaînes de traitement. La matière organique biodégradable (MOB) a été mesurée par la méthode Werner (1980).Les premiers résultats montrent :- l'élimination des MOB est comparable pour les différents procédés;- toutefois, la nature des MOB est sensiblement affectée à chaque type de traitement (ozonation, addition de CAP, filtration sur sable ou sur CAG)."Compagnie des Eaux de Banlieue" water facilities located at the Mont-Valérien treat the Seine river water downstream Paris. A first facility (5000 m3/day) includes the following processes : preozonation, coagulation, settling, sand filtration, postozonalion, GAC filtration and a final desinfection (CIO2). A second one consists in a biological sand filtration (80000 m3/day). An ultrafiltration demonstration plant including a CAP addition into the recirculation loop is currently tested on a small scale (8 m3/h) to compare the conventional treatments with new ultrafiltration process.In this study, the TOC removal as well as the biodegradable organic matter (BOM) removal are evaluated on the different processes. The BOM has been assessed by the Werner methodology (1980).During the cool season (october-january) all the biodegradable organic matter were removed by the clarification process (preozonation + coagulation decantation + sand filtration). More than 90 % of the BOM were also removed by the ultrafiltration demonstration plant (including granular activated carbon) although the addition of preozonation slightly increases the effluent BOM concentrations and modifies its composition. 80 % of the dissolved organic compounds were removed by the preozonation + ultrafiltration + powder treatment line. This performance should be compared with the 70 % removal obtained with conventional treatments.This study demonstrate that the combination 03 + UF + CAP can advantageously replace traditional treatment such as preozonation + coagulation clarification + ozonation + granular activated carbon + desinfection
The CoRoT B-type binary HD50230: a prototypical hybrid pulsator with g-mode period and p-mode frequency spacings
B-type stars are promising targets for asteroseismic modelling, since their
frequency spectrum is relatively simple.
We deduce and summarise observational constraints for the hybrid pulsator,
HD50230, earlier reported to have deviations from a uniform period spacing of
its gravity modes. The combination of spectra and a high-quality light curve
measured by the CoRoT satellite allow a combined approach to fix the position
of HD50230 in the HR diagram.
To describe the observed pulsations, classical Fourier analysis was combined
with short-time Fourier transformations and frequency spacing analysis
techniques. Visual spectra were used to constrain the projected rotation rate
of the star and the fundamental parameters of the target. In a first
approximation, the combined information was used to interpret multiplets and
spacings to infer the true surface rotation rate and a rough estimate of the
inclination angle.
We identify HD50230 as a spectroscopic binary and characterise the two
components. We detect the simultaneous presence of high-order g modes and
low-order p and g-modes in the CoRoT light curve, but were unable to link them
to line profile variations in the spectroscopic time series. We extract the
relevant information from the frequency spectrum, which can be used for seismic
modelling, and explore possible interpretations of the pressure mode spectrum.Comment: 26 pages, 12+6 figures, accepted for publication in Astronomy and
Astrophysic
Seismic and spectroscopic characterization of the solar-like pulsating CoRoT target HD 49385
The star HD 49385 is the first G-type solar-like pulsator observed in the
seismology field of the space telescope CoRoT. The satellite collected 137 days
of high-precision photometric data on this star, confirming that it presents
solar-like oscillations. HD 49385 was also observed in spectroscopy with the
NARVAL spectrograph in January 2009. Our goal is to characterize HD 49385 using
both spectroscopic and seismic data. The fundamental stellar parameters of HD
49385 are derived with the semi-automatic software VWA, and the projected
rotational velocity is estimated by fitting synthetic profiles to isolated
lines in the observed spectrum. A maximum likelihood estimation is used to
determine the parameters of the observed p modes. We perform a global fit, in
which modes are fitted simultaneously over nine radial orders, with degrees
ranging from l=0 to l=3 (36 individual modes). Precise estimates of the
atmospheric parameters (Teff, [M/H], log g) and of the vsini of HD 49385 are
obtained. The seismic analysis of the star leads to a clear identification of
the modes for degrees l=0,1,2. Around the maximum of the signal (nu=1013
microHz), some peaks are found significant and compatible with the expected
characteristics of l=3 modes. Our fit yields robust estimates of the
frequencies, linewidths and amplitudes of the modes. We find amplitudes of
about 5.6 +/- 0.8 ppm for radial modes at the maximum of the signal. The
lifetimes of the modes range from one day (at high frequency) to a bit more
than two days (at low frequency). Significant peaks are found outside the
identified ridges and are fitted. They are attributed to mixed modes.Comment: 13 pages, 14 figures, accepted in A&
Solar-like oscillations with low amplitude in the CoRoT target HD 181906
Context: The F8 star HD 181906 (effective temperature ~6300K) was observed
for 156 days by the CoRoT satellite during the first long run in the centre
direction. Analysis of the data reveals a spectrum of solar-like acoustic
oscillations. However, the faintness of the target (m_v=7.65) means the
signal-to-noise (S/N) in the acoustic modes is quite low, and this low S/N
leads to complications in the analysis. Aims: To extract global variables of
the star as well as key parameters of the p modes observed in the power
spectrum of the lightcurve. Methods: The power spectrum of the lightcurve, a
wavelet transform and spot fitting have been used to obtain the average
rotation rate of the star and its inclination angle. Then, the autocorrelation
of the power spectrum and the power spectrum of the power spectrum were used to
properly determine the large separation. Finally, estimations of the mode
parameters have been done by maximizing the likelihood of a global fit, where
several modes were fit simultaneously. Results: We have been able to infer the
mean surface rotation rate of the star (~4 microHz) with indications of the
presence of surface differential rotation, the large separation of the p modes
(~87 microHz), and therefore also the ridges corresponding to overtones of the
acoustic modes.Comment: Paper Accepted to be published in A&A. 10 Pages, 12 figure
CoRoT's view of newly discovered B-star pulsators: results for 358 candidate B pulsators from the initial run's exoplanet field data
We search for new variable B-type pulsators in the CoRoT data assembled
primarily for planet detection, as part of CoRoT's Additional Programme. We aim
to explore the properties of newly discovered B-type pulsators from the
uninterrupted CoRoT space-based photometry and to compare them with known
members of the Beta Cep and slowly pulsating B star (SPB) classes. We developed
automated data analysis tools that include algorithms for jump correction,
light-curve detrending, frequency detection, frequency combination search, and
for frequency and period spacing searches. Besides numerous new, classical,
slowly pulsating B stars, we find evidence for a new class of low-amplitude
B-type pulsators between the SPB and Delta Sct instability strips, with a very
broad range of frequencies and low amplitudes, as well as several slowly
pulsating B stars with residual excess power at frequencies typically a factor
three above their expected g-mode frequencies. The frequency data we obtained
for numerous new B-type pulsators represent an appropriate starting point for
further theoretical analyses of these stars, once their effective temperature,
gravity, rotation velocity, and abundances will be derived spectroscopically in
the framework of an ongoing FLAMES survey at the VLT.Comment: 22 pages, 30 figures, accepted for publication in A&
The CoRoT target HD175726: an active star with weak solar-like oscillations
Context. The CoRoT short runs give us the opportunity to observe a large
variety of late-type stars through their solar-like oscillations. We report
observations of the star HD175726 that lasted for 27 days during the first
short run of the mission. The time series reveals a high-activity signal and
the power spectrum presents an excess due to solar-like oscillations with a low
signal-to-noise ratio. Aims. Our aim is to identify the most efficient tools to
extract as much information as possible from the power density spectrum.
Methods. The most productive method appears to be the autocorrelation of the
time series, calculated as the spectrum of the filtered spectrum. This method
is efficient, very rapid computationally, and will be useful for the analysis
of other targets, observed with CoRoT or with forthcoming missions such as
Kepler and Plato. Results. The mean large separation has been measured to be
97.2+-0.5 microHz, slightly below the expected value determined from solar
scaling laws.We also show strong evidence for variation of the large separation
with frequency. The bolometric mode amplitude is only 1.7+-0.25 ppm for radial
modes, which is 1.7 times less than expected. Due to the low signal-to-noise
ratio, mode identification is not possible for the available data set of
HD175726. Conclusions. This study shows the possibility of extracting a seismic
signal despite a signal-to-noise ratio of only 0.37. The observation of such a
target shows the efficiency of the CoRoT data, and the potential benefit of
longer observing runs.Comment: 8 pages. Accepted in A&
Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network
Multiwavelength studies of MHD waves in the solar chromosphere: An overview of recent results
The chromosphere is a thin layer of the solar atmosphere that bridges the
relatively cool photosphere and the intensely heated transition region and
corona. Compressible and incompressible waves propagating through the
chromosphere can supply significant amounts of energy to the interface region
and corona. In recent years an abundance of high-resolution observations from
state-of-the-art facilities have provided new and exciting ways of
disentangling the characteristics of oscillatory phenomena propagating through
the dynamic chromosphere. Coupled with rapid advancements in
magnetohydrodynamic wave theory, we are now in an ideal position to thoroughly
investigate the role waves play in supplying energy to sustain chromospheric
and coronal heating. Here, we review the recent progress made in
characterising, categorising and interpreting oscillations manifesting in the
solar chromosphere, with an impetus placed on their intrinsic energetics.Comment: 48 pages, 25 figures, accepted into Space Science Review
Asteroseismology from multi-month Kepler photometry: the evolved Sun-like stars KIC 10273246 and KIC 10920273
The evolved main-sequence Sun-like stars KIC 10273246 (F-type) and KIC
10920273 (G-type) were observed with the NASA Kepler satellite for
approximately ten months with a duty cycle in excess of 90%. Such continuous
and long observations are unprecedented for solar-type stars other than the
Sun.
We aimed mainly at extracting estimates of p-mode frequencies - as well as of
other individual mode parameters - from the power spectra of the light curves
of both stars, thus providing scope for a full seismic characterization.
The light curves were corrected for instrumental effects in a manner
independent of the Kepler Science Pipeline. Estimation of individual mode
parameters was based both on the maximization of the likelihood of a model
describing the power spectrum and on a classic prewhitening method. Finally, we
employed a procedure for selecting frequency lists to be used in stellar
modeling.
A total of 30 and 21 modes of degree l=0,1,2 - spanning at least eight radial
orders - have been identified for KIC 10273246 and KIC 10920273, respectively.
Two avoided crossings (l=1 ridge) have been identified for KIC 10273246,
whereas one avoided crossing plus another likely one have been identified for
KIC 10920273. Good agreement is found between observed and predicted mode
amplitudes for the F-type star KIC 10273246, based on a revised scaling
relation. Estimates are given of the rotational periods, the parameters
describing stellar granulation and the global asteroseismic parameters
and .Comment: 15 pages, 15 figures, to be published in Astronomy & Astrophysic
- …
