59,225 research outputs found

    Microscopic Approach to Nucleon Spectra in Hypernuclear Non-Mesonic Weak Decay

    Get PDF
    A consistent microscopic diagrammatic approach is applied for the first time to the calculation of the nucleon emission spectra in the non-mesonic weak decay of Lambda-hypernuclei. We adopt a nuclear matter formalism extended to finite nuclei via the local density approximation, a one--meson exchange weak transition potential and a Bonn nucleon-nucleon strong potential. Ground state correlations and final state interactions, at second order in the nucleon--nucleon interaction, are introduced on the same footing for all the isospin channels of one- and two-nucleon induced decays. Single and double--coincidence nucleon spectra are predicted for 12_Lambda^C and compared with recent KEK and FINUDA data. The key role played by quantum interference terms allows us to improve the predictions obtained with intranuclear cascade codes. Discrepancies with data remain for proton emission.Comment: 11 pages, 6 figures, 2 tables. To be published in Physics Letters

    Galaxy And Mass Assembly (GAMA): linking star formation histories and stellar mass growth

    Get PDF
    We present evidence for stochastic star formation histories in low-mass (M* < 1010 M⊙) galaxies from observations within the Galaxy And Mass Assembly (GAMA) survey. For ˜73 000 galaxies between 0.05 < z < 0.32, we calculate star formation rates (SFR) and specific star formation rates (SSFR = SFR/M*) from spectroscopic Hα measurements and apply dust corrections derived from Balmer decrements. We find a dependence of SSFR on stellar mass, such that SSFRs decrease with increasing stellar mass for star-forming galaxies, and for the full sample, SSFRs decrease as a stronger function of stellar mass. We use simple parametrizations of exponentially declining star formation histories to investigate the dependence on stellar mass of the star formation time-scale and the formation redshift. We find that parametrizations previously fit to samples of z ˜ 1 galaxies cannot recover the distributions of SSFRs and stellar masses observed in the GAMA sample between 0.05 < z < 0.32. In particular, a large number of low-mass (M* < 1010 M⊙) galaxies are observed to have much higher SSFRs than can be explained by these simple models over the redshift range of 0.05 < z < 0.32, even when invoking mass-dependent staged evolution. For such a large number of galaxies to maintain low stellar masses, yet harbour such high SSFRs, requires the late onset of a weak underlying exponentially declining star formation history with stochastic bursts of star formation superimposed

    On some derivatives of phenylethers, 2

    Get PDF
    Products and the synthesis of chloronitrobenzol with certain phenolates are discussed, as is the p-oxyphenylether occasionally produced. Yield, melting point, and physical description are given for each product. The products include 2,4'-dinitrophenylether; 2,2'-dinitrophenylether; p-nitrophenylether-p-oxybenzoic acid and its methylester; p-aminophenylether-p-oxybenzoic acid, its sulfate, and its barium salt; and p-oxypenylether

    On the role of ground state correlations in hypernuclear non-mesonic weak decay

    Get PDF
    The contribution of ground state correlations (GSC) to the non--mesonic weak decay of Λ12^{12}_\LambdaC and other medium to heavy hypernuclei is studied within a nuclear matter formalism implemented in a local density approximation. We adopt a weak transition potential including the exchange of the complete octets of pseudoscalar and vector mesons as well as a residual strong interaction modeled on the Bonn potential. Leading GSC contributions, at first order in the residual strong interaction, are introduced on the same footing for all isospin channels of one-- and two--nucleon induced decays. Together with fermion antisymmetrization, GSC turn out to be important for an accurate determination of the decay widths. Besides opening the two--nucleon stimulated decay channels, for Λ12^{12}_\LambdaC GSC are responsible for 14% of the rate Γ1\Gamma_1 while increasing the Γn/Γp\Gamma_{n}/\Gamma_{p} ratio by 4%. Our final results for Λ12^{12}_\LambdaC are: ΓNM=0.98\Gamma_{\rm NM}=0.98, Γn/Γp=0.34\Gamma_{n}/\Gamma_{p}=0.34 and Γ2/ΓNM=0.26\Gamma_2/\Gamma_{\rm NM}=0.26. The saturation property of ΓNM\Gamma_{\rm NM} with increasing hypernuclear mass number is clearly observed. The agreement with data of our predictions for ΓNM\Gamma_{\rm NM}, Γn/Γp\Gamma_n/\Gamma_p and Γ2\Gamma_2 is rather good.Comment: 32 pages, 9 figure

    Actuation, propagation, and detection of transverse magnetoelastic waves in ferromagnets

    Full text link
    We study propagation of ultrasonic waves through a ferromagnetic medium with special attention to the boundary conditions at the interface with an ultrasonic actuator. In analogy to charge and spin transport in conductors, we formulate the energy transport through the system as a scattering problem. We find that the magneto-elastic coupling leads to a non-vanishing magnetic (elastic) energy accompanying the acoustic (spin) waves with a resonantly enhanced effect around the dispersion relation anti-crossing point. We demonstrate the physics of excitation of magnetization dynamics via acoustic waves injection around the ferromagnetic resonance frequency.Comment: 6 pages, 4 figures (minor changes in presentation

    Diffusion of Monochromatic Classical Waves

    Full text link
    We study the diffusion of monochromatic classical waves in a disordered acoustic medium by scattering theory. In order to avoid artifacts associated with mathematical point scatterers, we model the randomness by small but finite insertions. We derive expressions for the configuration-averaged energy flux, energy density, and intensity for one, two and three dimensional (1D, 2D and 3D) systems with an embedded monochromatic source using the ladder approximation to the Bethe-Salpeter equation. We study the transition from ballistic to diffusive wave propagation and obtain results for the frequency-dependence of the medium properties such as mean free path and diffusion coefficient as a function of the scattering parameters. We discover characteristic differences of the diffusion in 2D as compared to the conventional 3D case, such as an explicit dependence of the energy flux on the mean free path and quite different expressions for the effective transport velocity.Comment: 11 pages, 2 figure

    Symmetry and Variation of Hodge Structures

    Full text link
    The main problem addressed in the paper is the Torelli problem for n-dimensional varieties of general type, more specifically for varieties with ample canonical bundle. It asks under which geometrical condition for a variety the period map for the Hodge structure of weight n is a local embedding. We define a line bundle to be almost very ample iff the associated linear system is base point free and yields an injective morphism. We define instead a line bundle to be quasi very ample if it yields a birational morphism which is a local embedding on the complement of a finite set. Our main result is the existence of infinitely many families of surfaces of general type, with quasi very ample canonical bundle, each yielding an irreducible connected component of the moduli space, such that the period map has everywhere positive dimensional fibres. These surfaces are surfaces isogenous to a product, i.e., quotients of a product of curves by the free action of a finite group G. In the paper we also give some sufficient conditions in order that global double Torelli holds for these surfaces, i.e., the isomorphism type of the surface is reconstructed from the fundamental group plus the Hodge structure on the cohomology algebra. We do this via some useful lemmas on the action of an abelian group on the cohomology of an algebraic curve. We also establish a birational description of the moduli space of curves of genus 3 with a non trivial 3-torsion divisor.Comment: 38 pages, to appear in Asian J. Math., Volume in honour of Y.T. Siu's 60-th birthday. Revision, we correct the main theorem replacing almost very ample by quasi very ample, which is in one way better and in one way wors

    Zero-field Quantum Critical Point in CeCoIn5_5

    Full text link
    Quantum criticality in the normal and superconducting state of the heavy-fermion metal CeCoIn5_5 is studied by measurements of the magnetic Gr\"{u}neisen ratio, ΓH\Gamma_H, and specific heat in different field orientations and temperatures down to 50 mK. Universal temperature over magnetic field scaling of ΓH\Gamma_H in the normal state indicates a hidden quantum critical point at zero field. Within the superconducting state the quasiparticle entropy at constant temperature increases upon reducing the field towards zero, providing additional evidence for zero-field quantum criticality.Comment: submitted to PR
    corecore