23,615 research outputs found
Observations of stratospheric source gas profiles during the Arctic winter
An international campaign was performed at ESRANGE rocket base, near Kiruna, Sweden (68 N) from January 4 to February 15 in order to investigate the Chemistry of Ozone in the Polar Stratosphere (CHEOPS). Within the framework of this campaign two sets of large stratospheric air samples were collected by means of a balloon borne cryogenic air sampler. The two balloons were launched on February 1, and February 10, 1988. At present the samples are analyzed in our laboratory for their contents of several long lived trace gases such as CH4, N2O, H2, CO2, CO and the major halocarbons CH3Cl, CFCl3, CF2Cl2, CCl4, CH3CCl3, and C2F3Cl3. The vertical profiles derived from these samples will be presented and compared with previous observations made in February 1987. The data will be discussed in view of the dynamical evolution of the Arctic polar vortex during this winter
Clear and Compress: Computing Persistent Homology in Chunks
We present a parallelizable algorithm for computing the persistent homology
of a filtered chain complex. Our approach differs from the commonly used
reduction algorithm by first computing persistence pairs within local chunks,
then simplifying the unpaired columns, and finally applying standard reduction
on the simplified matrix. The approach generalizes a technique by G\"unther et
al., which uses discrete Morse Theory to compute persistence; we derive the
same worst-case complexity bound in a more general context. The algorithm
employs several practical optimization techniques which are of independent
interest. Our sequential implementation of the algorithm is competitive with
state-of-the-art methods, and we improve the performance through parallelized
computation.Comment: This result was presented at TopoInVis 2013
(http://www.sci.utah.edu/topoinvis13.html
Thin film evolution equations from (evaporating) dewetting liquid layers to epitaxial growth
In the present contribution we review basic mathematical results for three
physical systems involving self-organising solid or liquid films at solid
surfaces. The films may undergo a structuring process by dewetting,
evaporation/condensation or epitaxial growth, respectively. We highlight
similarities and differences of the three systems based on the observation that
in certain limits all of them may be described using models of similar form,
i.e., time evolution equations for the film thickness profile. Those equations
represent gradient dynamics characterized by mobility functions and an
underlying energy functional.
Two basic steps of mathematical analysis are used to compare the different
system. First, we discuss the linear stability of homogeneous steady states,
i.e., flat films; and second the systematics of non-trivial steady states,
i.e., drop/hole states for dewetting films and quantum dot states in epitaxial
growth, respectively. Our aim is to illustrate that the underlying solution
structure might be very complex as in the case of epitaxial growth but can be
better understood when comparing to the much simpler results for the dewetting
liquid film. We furthermore show that the numerical continuation techniques
employed can shed some light on this structure in a more convenient way than
time-stepping methods.
Finally we discuss that the usage of the employed general formulation does
not only relate seemingly not related physical systems mathematically, but does
as well allow to discuss model extensions in a more unified way
Heavy fermion superconductivity and magnetic order in non-centrosymmetric
is a novel heavy fermion superconductor, crystallising in the
structure as a tetragonally distorted low symmetry variant of the
structure type. exhibits antiferromagnetic order at
K and enters into a heavy fermion superconducting state at
K. Large values of T/K and T refer to heavy quasiparticles forming Cooper pairs. Hitherto, is the first heavy fermion superconductor without a center of
symmetry.Comment: 4 pages, 4 figure
3D Geometric Analysis of Tubular Objects based on Surface Normal Accumulation
This paper proposes a simple and efficient method for the reconstruction and
extraction of geometric parameters from 3D tubular objects. Our method
constructs an image that accumulates surface normal information, then peaks
within this image are located by tracking. Finally, the positions of these are
optimized to lie precisely on the tubular shape centerline. This method is very
versatile, and is able to process various input data types like full or partial
mesh acquired from 3D laser scans, 3D height map or discrete volumetric images.
The proposed algorithm is simple to implement, contains few parameters and can
be computed in linear time with respect to the number of surface faces. Since
the extracted tube centerline is accurate, we are able to decompose the tube
into rectilinear parts and torus-like parts. This is done with a new linear
time 3D torus detection algorithm, which follows the same principle of a
previous work on 2D arc circle recognition. Detailed experiments show the
versatility, accuracy and robustness of our new method.Comment: in 18th International Conference on Image Analysis and Processing,
Sep 2015, Genova, Italy. 201
Evolution of pion HBT radii from RHIC to LHC -- Predictions from ideal hydrodynamics
We present hydrodynamic predictions for the charged pion HBT radii for a
range of initial conditions covering those presumably reached in Pb+Pb
collisions at the LHC. We study central (b=0) and semi-central (b=7fm)
collisions and show the expected increase of the HBT radii and their azimuthal
oscillations. The predicted trends in the oscillation amplitudes reflect a
change of the final source shape from out-of-plane to in-plane deformation as
the initial entropy density is increased.Comment: 6 pages, incl. 5 figures. Contribution to the CERN Theory Institute
Workshop "Heavy Ion Collisions at the LHC -- Last Call for Predictions",
CERN, 14 May - 8 June 2007, to appear in J. Phys.
Exponential torsion growth for random 3-manifolds
We show that a random 3-manifold with positive first Betti number admits a tower of cyclic covers with exponential torsion growth
Crossover from Single-Ion to Coherent Non-Fermi Liquid Behavior in CeLaNiGe
We report specific heat and magneto-resistance studies on the compound
CeLaNiGe for various concentrations over the entire
stoichiometric range. Our data reveal single-ion scaling with Ce-concentration
between and 0.95. Furthermore, CeNiGe turns out to have
the largest ever recorded value of the electronic specific heat 5.5 J at K which was found in Cerium
f-electron lattice systems. In the doped samples increases
logarithmically in the temperature range between 3 K and 50 mK typical for
non-Fermi liquid (nFl) behavior, while exhibits a Kondo-like minimum
around 30 K, followed by a single-ion local nFl behavior. In contrast to this,
CeNiGe flattens out in below 300 mK and displays a
pronounced maximum in the resistivity curve at 1.5 K indicating a coherent
heavy fermion groundstate. These properties render the compound
CeLaNiGe a unique system on the borderline between
Fermi liquid and nFl physics.Comment: 2 pages, 3 figures, SCES0
Fully-dynamic Approximation of Betweenness Centrality
Betweenness is a well-known centrality measure that ranks the nodes of a
network according to their participation in shortest paths. Since an exact
computation is prohibitive in large networks, several approximation algorithms
have been proposed. Besides that, recent years have seen the publication of
dynamic algorithms for efficient recomputation of betweenness in evolving
networks. In previous work we proposed the first semi-dynamic algorithms that
recompute an approximation of betweenness in connected graphs after batches of
edge insertions.
In this paper we propose the first fully-dynamic approximation algorithms
(for weighted and unweighted undirected graphs that need not to be connected)
with a provable guarantee on the maximum approximation error. The transfer to
fully-dynamic and disconnected graphs implies additional algorithmic problems
that could be of independent interest. In particular, we propose a new upper
bound on the vertex diameter for weighted undirected graphs. For both weighted
and unweighted graphs, we also propose the first fully-dynamic algorithms that
keep track of such upper bound. In addition, we extend our former algorithm for
semi-dynamic BFS to batches of both edge insertions and deletions.
Using approximation, our algorithms are the first to make in-memory
computation of betweenness in fully-dynamic networks with millions of edges
feasible. Our experiments show that they can achieve substantial speedups
compared to recomputation, up to several orders of magnitude
Handlungsbefähigung und Bildungsmobilität in der "Wissensgesellschaft"
In unserem Vortrag soll es um eine ungleichheits- und bildungssoziologische Reflexion von Konzepten wie selbstgesteuertes Lernen oder lebenslanges Lernen gehen. Wir werden in einem ersten Schritt auf die populäre Zeitdiagnose der "Wissensgesellschaft" eingehen, die in aller Regel als Begründungsfolie für derartige Konzepte fungiert, in einem zweiten Schritt auf den Stand der soziologischen Bildungsforschung rekurrieren um schließlich milieuspezifische Handlungsbefähigungen als Erklärungsrahmen für die Kontinuität von Bildungsungleichheiten anzubieten
- …
